

UXP Developer Guide
Version: V3.4.0

Copyright © 2020, Sertainty Corporation

Sertainty

 Copyright © 2020, Sertainty Corporation

2

V3.2.0.

Table of Contents

1 UXP ENGINE ... 4

1.1 UXP IDENTITY DATA ... 4
1.2 USER DATA ... 4
1.3 KCL CODE MODULE ... 5
1.3.1 KCL CODE MODULE CONTROL USING A UXP ID ... 5
1.4 UXP OBJECT .. 6
1.5 MULTI-USER ACCESS ... 7
1.6 LOG FILES ... 8
1.7 VIRTUAL FILES.. 8
1.8 USER DEFINITIONS .. 9
1.8.1 RESPONSE VALUE RESTRICTIONS .. 10
1.8.2 RESPONSE DATA MASKING.. 11
1.8.3 AUTHENTICATING A UXP OBJECT .. 12
1.8.4 MULTI-FACTOR AUTHENTICATION ... 12
1.9 EVENTS .. 13
1.10 DEFERRED MESSAGE DELIVERY .. 15
1.11 E-MAIL SERVICES .. 15
1.12 SMS SERVICES .. 16
1.13 LOCATION SERVICES .. 16
1.14 HOME DIRECTORY ... 17
1.15 COMMON HOME DIRECTORY ... 17
1.16 LICENSE SUPPORT .. 18
1.17 FILE SPECIFICATION TOKENS .. 18
1.18 PREFERENCES .. 20
1.19 ENVIRONMENT VARIABLES .. 25

2 UXP OBJECT CONSTRUCTION AND ACCESS ... 26

2.1 BUILDING YOUR APPLICATION .. 26
2.1.1 DEPLOYMENT ... 32
2.2 SAMPLE NATIVE CONSTRUCTION FLOW USING C LANGUAGE .. 33
2.3 REQUIRED USER DEFINITION ELEMENTS ... 35
2.4 PRE-LOADING RESPONSES ... 36
2.4.1 OPENING AN EXISTING UXP OBJECT ... 36
2.4.2 ADDING A NEW DOCUMENT TO THE UXP OBJECT .. 37
2.4.3 ACCESSING AN EXISTING DOCUMENT IN THE UXP OBJECT ... 37
2.5 UXP CALLBACKS .. 37
2.6 SAMPLE CALLBACK TO PROMPT THE USER FOR CHALLENGES... 38
2.7 APPLICATION EXAMPLE SCENARIOS .. 39

3 ADVANCED TECHNOLOGIES ... 39

 Copyright © 2020, Sertainty Corporation

3

V3.2.0.

3.1 SQL ENGINE ... 39
3.1.1 FEATURES ... 40
3.2 SECURE VARIABLES ... 41
3.3 SECURE STRING CONSTANTS ... 41
3.4 CUSTOM ERROR AND TEXT MESSAGES ... 44
3.5 BUILDING NATIVE UXL FUNCTIONS ... 47
3.5.1 GETTING STARTED .. 47
3.6 SMARTMESSAGE ... 48
3.7 ANONYMOUS SMARTMESSAGE EXCHANGE (SMEX) .. 50

4 SERTAINTY UXP IDENTITY (UXP ID) ... 51

4.1 UXP ID CONSTRUCTION .. 51
▪ MANAGED ID INTERFACE (MID) .. 53
4.1.1.1 EXAMPLE OF FULL ID XML SCHEMA, COMPLETE WITH ONE VALID USER .. 53
4.1.1.2 EXAMPLE OF USER XML SCHEMA .. 57
4.1.1.3 EXAMPLE OF A MACHINE CONFIGURATION XML SCHEMA ... 58
4.1.1.4 EXAMPLE OF UXP ID CREATION .. 59
▪ RULE PRESETS .. 60
4.2 SINGLE-SIGN-ON ... 70

5 SERTAINTY DRIVE ... 70

 Copyright © 2020, Sertainty Corporation

4

V3.2.0.

1 UXP Engine

The Sertainty UXP Technology implements the Unbreakable Exchange Protocol (UXP) to provide a

methodology and means by which one can protect and control access to private data. Unlike existing

approaches, the UXP Engine embeds active technology within a protected entity to prevent unauthorized

access no matter where the document resides. The UXP Engine, as part of the UXP Technology libraries, is

external to the UXP Object.

1.1 UXP Identity Data

UXP Identity (UXP ID) Definition consists of several components to form a unique digital fingerprint of the

client. The UXP ID Definition can represent a human, a machine or a process.

UXP ID Definition consists of the following attributes:

• User Definition

The User Definition consists of a unique identifier and private UXP Identity artifacts. Though an

account must be created and managed by a person, it can represent inanimate objects such as web

sites, documents, devices or even locations.

A UXP Object must contain at least one active User Definition; otherwise, the UXP Object will be

permanently locked. The User Definition can be presented at UXP Object creation time via native

KCL Code or via a UXP ID Definition.

UXP ID-based User Definitions are created and stored as a Special Purpose UXP Object called a

UXP Identity. The username can be a simple name or a validated email address. With a simple valid

email, the user has gained implied trust. To achieve certified trust, the user and email address must be

validated and confirmed by a third-party entity, such as a government agency. Trusted validation is not

yet implemented.

• Environment

When a User is authenticated, the system automatically acquires a configuration from the client

application containing location and device. That data is transformed into the current configuration for

the User and is compared to known configurations.

A configuration formally contains a configuration header, network, location and device data. A

configuration can be acquired by the Sertainty system or one can fabricate a configuration using the ID

Definition XML template.

Note: a manually designed configuration must still match an automatically acquired configuration at

authentication time.

1.2 User Data

 Copyright © 2020, Sertainty Corporation

5

V3.2.0.

User data can be any block of data. The UXP Engine accepts serializable objects, string data, binary data and

files to produce a protected entity within the UXP Object. To the UXP Engine, data is always treated as a

series of unsigned bytes that can contain any value.

The UXP Engine can protect a single data artifact or many artifacts concurrently. In fact, the UXP Engine has

a built-in virtual file system that will permit a complete file hierarchy to be protected within a single instance of a

UXP Object.

1.3 KCL Code Module

Every UXP Object a contains KCL Code executable. The KCL Code is a proprietary program that is used to

control access and policies on behalf of the data owner. The KCL Code can be constructed two ways:

• Custom KCL

KCL is a proprietary C-like language that allows for a flexible way of constructing an engine. It

does, however, require skills in programming and can be difficult to implement. A benefit of using

custom KCL Code is that a designer can implement decisions that are unique to the

implementation.

See Sertainty KCL Guide for more information.

• UXP ID

The preferred and easiest method for constructing KCL Code is by way of the UXP Identity. When

using the UXP Identity, a pre-designed KCL Code is constructed using various identity and policy

artifacts from the UXP Identity. The benefit is that the user can use the power of KCL without

coding the KCL Code module.

1.3.1 KCL Code Module Control using a UXP ID

An alternative to manual KCL Code development is the UXP ID. A UXP Identity can generate the necessary

KCL Code components and allow a user to develop a complex identity and governance without any manual

coding.

The UXP Identity is actually a self-protecting Special Purpose UXP Object that contains pre-built KCL Code .

It requires no programming skills and makes it very easy to build UXP objects.

A UXP Identity can be created by several methods:

• From an ID Definition XML template that sets pre-defined policy attributes and user access.

• From the Sertainty Assistant, ID Editor. The ID Editor allows the user to design a UXP Identity via a

graphical user interface.

See the Sertainty Workflow Guide for detailed information on UXP Identity construction and usage.

Note: Sertainty recommends using the UXP Identity method for setting up UXP Objects.

 Copyright © 2020, Sertainty Corporation

6

V3.2.0.

1.4 UXP Object

The UXP Object consists of several component layers:

• Virtual Header

Every UXP Object contains a header that allows the UXP Engine to identify the UXP Object as valid

entity. If a header cannot be found or read, then the object is not considered a valid UXP Object.

The header is uniquely identified by a domain, which consists of multiple tokens. By default, the UXP

Engine will provide a default set of tokens, which means any UXP Object created will be recognized by

all other installations of UXP Technology.

If a particular installation desires a private UXP Object format, a domain can be defined and used when

creating and accessing Objects. If the correct domain information is not provided when opening the

UXP Object, the UXP Engine will not be able to access the virtual header information and will

terminate the operation.

A domain has two forms:

o Dynamic

A dynamic domain is private to the user of the technology. The domain information, consisting

of a two-part key, must be managed and protected by the user. Before a UXP Object can be

opened or created, the user must set the domain information.

o Licensed

A licensed domain is embedded in the license and must be set up by Sertainty. Since the

license manages the domain, the user only has to indicate the desired domain when creating a

UXP Object. To open a UXP Object that used a licensed domain, the UXP Engine will

automatically identify the license domain and use that information to access the UXP Object.

• UXP Object Metadata (Metadata)

The Metadata contains all the virtual file system data. All other user-specific data is stored as virtual

data files.

• Virtual File System

The virtual file system stores external data objects as files within the UXP Object.

Private cloaking keys protect a virtual file.

The following virtual files are supported:

o Directory

A directory can contain other virtual files as well as virtual sub-directories. This feature may

require additional license.

 Copyright © 2020, Sertainty Corporation

7

V3.2.0.

o Signature (TBD)

A signature file is an X509 certificate that can be used for document signing within the UXP

Object. This is not yet implemented.

o User data

User data can be any user-specified object. The virtual file can originate from either an existing

file or an in-memory buffer. It can contain anything that can normally go into a conventional file

and is only limited in size by the operation system itself.

• KCL Code

The core of every UXP Object is a small p-code executable that operates very similar to a conventional

computer. The KCL Code is fully self-contained and is machine independent; meaning that it can run

the same compiled KCL Code on all supported platforms without modification or re-compilation. The

KCL Code is discussed in more depth in the Sertainty KCL Guide.

The primary role of the KCL Code is to provide user definition and policy decisions. When a user

attempts to authenticate, the KCL Code must evaluate all relevant information as provided by the data

owner as well as environmental information collected by the system. If the KCL Code denies access,

the potential user will never access the protected data within the UXP Object.

1.5 Multi-User Access

A UXP Object can be opened in four modes:

• Share None

This mode locks the UXP Object for exclusive access. Though faster because less locking is

performed, a second user must wait until the UXP Object is closed before attempting to open it.

• Share All

This mode is the most flexible method of opening a UXP Object. It permits multiple concurrent
accesses; however, overall performance is slightly less than Share None.

• Share Anon

This mode permits any user to write a new virtual file to the UXP Object. The UXP Object must be
open, but not authenticated. Reads and updates are not permitted while in this mode.

• Share Read Only

This mode is useful for high performance shared read access. No locks are placed on the file, however;
it’s up to the UXP Object to permit this. In some situations, the operating environment may force read-
only mode.

The following restrictions exist when a UXP Object is open for read-only operations:

• Local event logging is disabled. Object activity will not be recorded within the UXP Object.

 Copyright © 2020, Sertainty Corporation

8

V3.2.0.

• Device and location changes will not be saved, meaning that the system will always consider

unknown devices and locations as untrusted. Normally, a UXP Object may attempt to remember

where it has been authenticated. Future attempts to authenticate may benefit from the knowledge

of a prior access.

• UXP Object statistics will not be gathered

• All changes to the UXP Object will be disabled, including adding, deleting and altering files.

During authentication, the owner can check the KCL Code variable Read Only to determine the status

of the UXP Object. If the UXP Object is physically read-only, the authentication can reject the

connection and the user will not be permitted to open the UXP Object. If the owner does not have a

problem with the read-only restrictions, the read-only status can be ignored, and the user will be

permitted to open the UXP Object upon successful authentication.

When the UXP Object is an in-memory buffer, the only available mode is Share None.

1.6 Log Files

The UXP Engine attempts to create a log file when logging is enabled by the UXP Object-aware application.

Logging is used to record various activities within the environment as a record. It is nothing more than a ledger

or journal. The file will be named using a unique time code and can be found at the following location:

{Sertainty-install-folder}/log

If an alternate location is preferred, set the system environment variable UXPLOGPATH to the path.

A new log file is created at startup time of the UXP Engine. If the logging level is zero, then no log file will be

created for the specific application.

1.7 Virtual Files
All artifacts, whether it is private metadata or user data, are stored as virtual files within the UXP Object.

When a virtual file is created within a UXP Object, the data is managed similar to a conventional file system.

The system can maintain a hierarchy of directory structures, where each may contain virtual files and sub-

directories. A virtual file is identified by its full directory path and name.

In a virtual file path, a directory separator is the forward slash. The top-most directory is /. For example, a

simple virtual file name TMP at the top level would have a full path name of /TMP. The same virtual file within

a sub-directory MyDir would have a full path name of /MyDir/TMP.

With directory support, it is possible to protect an entire directory hierarchy in a single UXP Object.

Virtual names must be unique within their current directory and must be at least one non-blank character in

length.

A virtual file is very similar to a typical file on disk, except that it’s encapsulated within the defined UXP Object.

The virtual file, content-wise, is identical to its physical counterpart; however, several transparent permutations

may occur while transferring data into the protected UXP Object:

 Copyright © 2020, Sertainty Corporation

9

V3.2.0.

• Data is divided into fixed-length pages that are indexed. The page size can be specified at import time

or it can be defaulted. In both cases, the page size value is always aligned to the nearest power of two

that is greater than or equal to the specified value. The default value is 2MB.

• Every virtual file can have a data cache associated with it. At creation time, the cache size can be set to

any value between 0 and 20. A zero value will disable the cache. Each cache buffer is large enough to

hold a virtual file page. The purpose of the cache is most valuable for sequential access of large data

sets.

For example, if a video file has a page size of 2MB, yet the user application is fetching 512 byte buffers,

then the caching system will avoid a hard disk fetch by reading the requested data from an in-memory

buffer. For random access, the caching provides little benefit.

• At creation time, the virtual file can optionally be compressed. Depending on the file contents,

compression can reduce virtual file sizes up to 90%.

• A proprietary cloaking algorithm based on industry standard encryption and other cloaking techniques

protects all data. In fact, because of the virtual file system, most data artifacts are protected multiple

times via a recursive I/O system.

• Files can be hidden by prefixing the virtual file or directory name with a “.” Character. Only users with

owner privileges can access hidden files.

Like physical files, a virtual file can be accessed as a series of bytes. A calling routine can specify the starting

location within the virtual file as well as the number of bytes. The UXP Engine will then locate the desired data

block within the virtual file, decompress, if necessary and de-cloak only the data to be returned.

All unrequested data remains protected within the UXP Object.

Like similar file access routines in coding languages like C or C++, the UXP Engine supports full random

access seeks and fetches. Further, the user application can access the data as if the data is clear.

Translation of the user data to and from its protected state within the UXP Object is automatically managed.

When a virtual file is opened, the UXP Engine will call the rule Authentication::fileAccess to determine if the

user can access the file. UXP Object-level privileges do not necessarily grant file access.

1.8 User Definitions

User Definitions represent the entities that can authenticate and access UXP Object content. By design,

every UXP Object must have at least one User Definition, but can have many User Definitions.

Each User Definition consists of a public username and a set of challenge pairs, prompt / responses, that are

private to that user (human or machine). Additionally, there may be policies associated with the User

Definition such as schedules, acceptable location and hardware settings.

User Definition can be defined and managed by two methods:

• Custom KCL Code (see Sertainty KCL Guide for more detail)

 Copyright © 2020, Sertainty Corporation

10

V3.2.0.

• UXP ID Definition XML

Using either development method, the outcome is the same: User Definitions become a KCL Code

executable that is accessed during authentication and data access operations.

Challenge Pairs, Prompt/Response, are a primary contributor to the security of the UXP Object. Similar to

conventional username/password, the UXP Engine will use the data contained in the KCL Code to validate

user access.

Where the User Definition becomes far superior to the conventional approach is its algorithm to randomize

Challenge Prompt presentment and to assign relative trust. During an authentication attempt, the KCL Code

will determine how trustworthy the user is and recommend a number of challenge prompts to be presented. A

trust value of 100% may allow the user to authenticate with a very small number of challenge prompts, or even

no challenge prompts, while an untrustworthy access may present three, four or more challenge prompts. In

all cases, challenge prompts are randomly chosen, and any unacceptable responses are kept secret. This

inhibits random guesses by the user.

As noted, Challenge, Prompt/Response, pairs are private to a user. When constructing the pairs as a human,

Sertainty promotes a method of utilizing a person’s life history as opposed to conventional known random

passwords or hints that can be socially reverse engineered. It attempts to capture the person’s true identity that

is based on facts, not beliefs.

For a machine UXP Identity, the challenge pairs are auto generated as well randomly selecting machine

specific attributes. These will make up the UXP ID Definition for a machine.

For users who are insert, such as applications or machines, the User Definition supports fully randomized

prompt/response pairs that can be safely embedded within an application by way of Sertainty Secure Strings.

This technique protects the source data on disk and in memory, preventing pattern matching by binary data

scanners.

For all types of users, prompt/response pairs can either be optional or required. When a challenge pair is

optional, it becomes part of the pool of challenges use for choosing random challenges to present during

authentication. When a challenge is required, the KCL Code will force the challenge to be met for every

authentication. Typically, a machine-based user would be design with all challenges being required.

1.8.1 Response Value Restrictions

A challenge response must adhere to the following restrictions:

• A value must be of minimum length. The default length is 3 characters but can be modified using the

system preference minChallengeLength.

• A value cannot contain the prompt, regardless of the prompt and response case.

• A value cannot be repeated as a response value to other challenges more than 20% of the challenge

total.

 Copyright © 2020, Sertainty Corporation

11

V3.2.0.

• When complex response is enabled, a value must contain at least 1 uppercase, 1 lowercase, 1 digit

and 1 special character. Complex response values are enabled by the system preference

useComplexChallengeRules.

1.8.2 Response Data Masking
The UXP Engine provides options for masking user input. By masking data, the owner of the UXP Object can

require dynamic responses for any or every user challenge.

For example, the following challenge is issued:

Enter your code seven: XXXXXX

where XXXXXX is the stored response. Without masking, the value provided by the user must exactly match

XXXXXX every time the user is challenged in this form. With masking, the user may be required to enter

XXXXXX plus a dynamic time attribute, such as current day, current year, prior day, etc. If the challenge

requires the masking and the mask value for the user is the following:

MaskLastYear,MaskUserData,MaskNextMonth

the required input would be 2011XXXXXX8 if the current date is July, 2012. Without changing the UXP Object,

the response in January 2013 for the same challenge would be 2012XXXXXX2.

Each masking code is represented as a KCL variable with a constant value. The mask can be defined for each

challenge response as a list of masking codes separated by commas. When masking is enabled, the same

masking must be applied to each challenge response, except the original username challenge.

The following masking codes are supported in the KCL Code:

Table 6 – Masking Codes

Code Description

MaskAmPm
A constant containing the internal mask value. The mask value entered by the

user must be either AM or PM.

MaskDay
A constant containing the internal mask value. The user must enter the day of the

month.

MaskHour12
A constant containing the internal mask value. The user must enter the current

hour in 12-hour format where midnight to 1AM is 0 and noon to 1PM is also 0.

MaskHour24
A constant containing the internal mask value. The user must enter the current

hour in 24-hour format where midnight to 1AM s 0 and 11PM to midnight is 23.

MaskLastMonth

A constant containing the internal mask value. A constant containing the internal

mask value. The user must enter the month number for last month where January

is month 1 and December is month 12.

MaskLastYear
A constant containing the internal mask value. The user must enter the four-digit

year for last year.

MaskMonth
A constant containing the internal mask value. The user must enter the current

month number where January is month 1 and December is month 12.

MaskNextMonth
A constant containing the internal mask value. The user must enter the month

number for next month where January is month 1 and December is month 12.

MaskNextYear
A constant containing the internal mask value. The user must enter the four-digit

year for next year.

 Copyright © 2020, Sertainty Corporation

12

V3.2.0.

MaskToday
A constant containing the internal mask value. The user must enter the day of the

month.

MaskTomorrow

A constant containing the internal mask value. The user must enter the day of the

month for tomorrow. If today is the last day of the month, then tomorrow will be

the first day of the next month.

MaskUserData
A constant containing the internal mask value. The user must enter the actual

challenge value.

MaskYear
A constant containing the internal mask value. The user must enter the current

four-digit year.

MaskYesterday

A constant containing the internal mask value. The user must enter the day of the

month for yesterday. If today is the first day of the month, then yesterday will be

the last day of last month.

1.8.3 Authenticating a UXP Object

The UXP Engine implements the following workflow for a user:

1. Retrieve the username. A User Definition can be found only if the User provides a valid username.

2. If the current User Definition has a schedule defined, check to make sure the current time falls within

the specified schedule window.

3. Check the current device, network and location configuration.

4. Check any responses provided by the User.

5. Repeat these steps, if necessary.

The UXP Engine continues to follow the above steps until either the user is denied access with a status of

StatusNotAuthorized or granted access with a status of StatusAuthorized.

The status values returned by any of the above four steps are always returned to the KCL Code

Authentication::main routine. Within that routine, a call to validateUser is made, which performs the four

steps. The indicated status is returned via this call.

The Authentication::main procedure is ultimately responsible for setting the final status. It alone decides if the

user is permitted access, denied or challenged for more identity proof. The routine is given access to failure

counts, access counts, the current working user definition and various tools to notify users of failures and

successes. If the procedure returns the status StatusNotAuthorized, the system exits and denies access to

the protected entity. If the procedure returns the status StatusAuthorized, access is granted with the

designated privileges. All other status values trigger a user challenge for additional proof of identity.

1.8.4 Multi-factor Authentication
Multi-factor authentication is implemented using external factors and approvals.

External factors are similar to simple challenge pairs except that they are sent via E-mail or SMS to a target

address. When the User is prompted for the external factor, the User must have access to the external factor

recipient address or be in direct contact with the recipient.

 Copyright © 2020, Sertainty Corporation

13

V3.2.0.

If more than one external factor is issued, the User must get all external responses to obtain access

authorization. Alternatively, an owner may send the same external response to multiple external recipients. In

this scenario, the user must gain access to the response code from at least one of the recipients.

Approvals are similar to external factors but indicate an approval response is necessary to gain authorization

for a third party. The validation rules are the same as external factors.

To indicate multiple recipients for an external factor or approval, enter the recipient addresses separated by a

semi-colon character.

Example:

 challenge.address = foo@bar.com;foo2@bar.com

 challenge.address = 4233335567;4442225678;5535553456;4448885555@vnet.com

1.9 Events
The owner of the UXP Object controls all event logging. Logging will only occur if the correct event options are

set when the UXP Object is opened.

The following table determines when an event entry is recorded:

Table 1 – KCL Event Option Keywords

Event Option Description

EventAccess Indicates an event entry will be recorded upon any access.

EventEmail
Indicates an event entry will be sent to the email address as specified in

variable EventEmailAddress. Event data is sent in clear form.

EventEmailAddress Specifies the email address to use when EventEmail option is selected.

EventExternal Indicates an event entry will be recorded by calling the applications external

event callback. The callback function may read event data using the structured

API only if the caller knows the event key as set by the owner.

If the callback function is invalid, the event recorder will automatically attempt to

record the event within the UXP Object.

EventFailure Indicates an event entry will be recorded for any failed authentication attempt.

EventFile Indicates an event entry will be recorded in a local file.

EventFileSpec must contain the file specification.

If the EventFileSpec ends with .uxp, then the event will be recorded in an

existing UXP as an anonymous write.

If the EventFileSpec is the word console:, then the event will be recorded to

stdout.

EventFileSpec Specifies the local file specification or a trusted server URL.

Additionally, the keyword console: can be used as the output file. Event data

will be sent to the current console standard output device.

mailto:foo@bar.com;foo2@bar.com

 Copyright © 2020, Sertainty Corporation

14

V3.2.0.

Event Option Description

Example:

$(HOME)/$(UXP_FILENAME).log would become /home/myhome/foo.log

EventFtp Indicates an event entry will be recorded at a remote FTP site (Not yet

implemented).

EventFtpURL must contain the server URL.

EventFtpURL Indicates the remote ftp server URL.

EventLocal Indicates an event entry will be recorded within the UXP Object. An event

recorded locally is protected by the UXP. Only the owner and users with

ReadEvents privilege may read event data.

Event data is immutable. It cannot be changed or deleted by anyone.

EventMessages
Indicates an event entry will be recorded for any external E-mail and SMS

messages that are sent.

EventRemote Indicates an event entry will be recorded at a remote UXP entity http server

(Not yet been implemented).

EventURL must contain the server URL.

EventRepeats
Indicates an event entry will be recorded for repeated failed authentication

attempts.

EventSecurelKey Specifies a key that must be used by an external callback to read event data.

This option is used in conjunction with the EventExternal option.

EventSMS Indicates an event entry will be sent to the SMS phone number or address as

specified in the variable EventSmsAddress. Event data is sent in clear form.

EventSmsAddress Specifies an email address that will be use to deliver an SMS message.

EventURL Specifies the remote http server URL.

All options are maintained as bit switches, so any combination of options can be set using the single KCL

variable EventOptions.

For example, to set event logging for failures using the event callback, the following setting is required within

the KCL Authentication::setup routine:

EventOptions = EventFailure | EventExternal | EventFile;

EventFileSpec = “$(UXP_FILENAME).log”;

Event records critical information about the monitored activity. Each event record contains the following data:

Table 2 – Event Data

Item Description

User The user definition name of the current user.

Timestamp The date and time of the entry, including time zone and UTC offset.

 Copyright © 2020, Sertainty Corporation

15

V3.2.0.

Status A status value indicating success or failure.

Action An action value that indicates the attempted operation.

Message A text message describing the event entry.

Device Device data from the user’s computing device.

Location Location data describing the network and location of the user, if available.

For external and remote event logging, the data owner can specify a security key. The key is then used to

validate the event data before it is passed to the external agent. If no key is specified, the data is not protected.

1.10 Deferred Message Delivery

If a UXP Object triggers or initiates an external electronic message, such as an SMS message, an E-mail

message or an FTP delivery, the UXP Engine may decide to queue up the attempted delivery. If the object can

communicate with the Internet, delivery may be immediate. If the Internet is unavailable or is untrusted, the

attempted delivery will be saved in its own UXP Object and will be delivered at the next trusted opportunity.

The actual queue data is stored in a protected file in the following location:

{Sertainty-install-folder}/data/msg

1.11 E-mail Services

An E-mail service must be defined from within the KCL Code for each UXP Object. This means that each

UXP Object can have a unique E-mail service to which alerts and challenges are relayed. The service settings

must be defined when the UXP Engine calls the KCL routine Authentication::setup.

The following KCL variables are provided for E-mail setup:

Table 3 – E-mail KCL Variables

Variable Description

EmailAuthentication Specifies whether SMTP user authentication is performed. Possible values

are:

• False

• True

EmailPort Specifies the SMTP port number.

EmailPwd Specifies the account password used to connect to the SMTP server.

EmailReplyTo Specifies the sender’s E-mail address. This will become the reply address

when a message is sent. To add an optional name, use the following format

for your address:

name <email-address>

 Copyright © 2020, Sertainty Corporation

16

V3.2.0.

EmailSecurity Specifies the SMTP security setting.

Possible values are:

• SSL

• TSL

• NONE

EmailServer Specifies the SMTP server address used for E-mail relay.

EmailUser Specifies the account used to connect to the SMTP server.

1.12 SMS Services

SMS delivery is performed using a mobile service provider’s SMS via E-mail option. This requires the user to

provide a phone number for the supported service in the form:

xxxxxxxxxxx@service.com

The actual delivery will utilize the same e-mail configuration as defined in E-mail Services.

Unlike an E-mail message, an SMS message contains a subset of data elements for challenges and alerts. If a

UXP Object owner wishes full disclosure, it is recommended that an alert be send to a trusted E-mail client;

otherwise, complete device and location data will not be sent.

1.13 Location Services

As part of authentication, the UXP Engine attempts to find the physical location of the object at creation and

access time. To do that on non-cellular devices, a remote server must be accessed to get the correct IP

address as well as other ancillary artifacts such as street address and estimate geophysical coordinates.

By default, a built-in web service callout is provided with the UXP Engine.

Table 4 – Location Tags

Item Description

CityName Returns the city name.

CountryCode Returns the country abbreviation or code.

CountryName Returns the country name.

IP Returns the IP address. This is a required tag.

RegionCode Returns the state or region abbreviation.

RegionName Returns the state or region name.

StreetAddress Returns an approximate street address.

Zipcode Returns the approximate zip code.

mailto:xxxxxxxxxxx@service.com

 Copyright © 2020, Sertainty Corporation

17

V3.2.0.

For mobile devices with wireless support, UXP Object may determine a more accurate location than it does

with a simple IP address. Similar to the way a mapping application works, UXP Object can determine the

physical location to within 100 feet. Once the wireless triangulation has been established, the data is sent to a

remote server where the location data is mapped to physical address.

Because a callout is dependent on Internet routing and performance, a location call can be rather time

consuming. If your application prefers not to wait on location services, a preference is provided to control

behavior. Using the preference locationScanOption, one can set the following values to control behavior:

Table 5 – Location Scan Options

Option Description

uxpLocationScanNone Disables location scanning,

uxpLocationScanLevel1 Performs the fastest scan by retrieving an approximate location.

uxpLocationScanLevel2
Performs a mid-level scan that will attempt to utilize wireless

triangulation.

uxpLocationScanLevel3
Performs the most thorough and trusted location scan; however, a scan

may take up to 10 seconds at application startup.

A preference is set using a static call within the UXP Object library.

1.14 Home Directory

The UXP Object runtime requires a home directory to operate. Within the directory, a distributed file called

UXP sertainty.rsf must reside.

The directory name home will be located using the following search:

• Path found in the boot.ini file. Boot.ini is located in the same folder as the SertaintyCore shared library.

• Private storage path. (IOS and Android)

• UserDocumentsPath/Sertainty.

• The directory containing the running application binary.

• The current directory of the running application.

• In a location as defined in the system environment variable UXPHOME.

• UserHomePath/Sertainty.

• In a location as defined in a UXP Object preference uxphome.

• Shared path as defined at installation time.

1.15 Common Home Directory

For installations that wish to control client behavior, a common home is supported. The common home location

will be searched first for the requested resource. If not found there, a normal search of the standard home

directory will occur.

 Copyright © 2020, Sertainty Corporation

18

V3.2.0.

If a resource is found in common home, the resource will be copied to the standard home directory. This will

keep the user’s environment in sync, even if the user machine is not connected to a network.

To activate a common home for a user, the environment variable UXPCOMMONHOME must be set to a valid

directory.

1.16 License Support

A licensing sub-system is built into the UXP Object core library. It is used as a mechanism to control access to

the UXP Object library but can also be utilized by a third party to construct unbreakable license files for custom

applications.

A license is a Special Purpose UXP Object that can only be opened by the UXP Engine. It is not meant to be

accessed by the user as a simple protected data object. Like other UXP Objects, it is validated when opened

and can protect itself from illegal use.

The core UXP Object library requires a valid license for various activities. The license is loaded as part of the

initializeLibrary call that must be made prior to any other call to the library backend.

When calling initializeLibrary, the caller must pass the name of the license file. A license file can be located in

any directory, or the system will look in the valid UXP Object home directory. If the license file name is an

asterisk, the system will search for sertainty.lic in the Sertainty home folder. If the file name is a complete

specification, including the full volume specification, the system will attempt to find the license using that

specification. If the license name is a relative path and name, then it will prepend the Sertainty home folder

and attempt to search for the license.

Licensing not only controls access to the executable library, but also to UXP Objects. For example, a UXP

Object owner specifies the authenticated user can write the UXP Object; however, the current license only

permits reading. The license privilege will always override a UXP Object privilege if the UXP Object privilege

is greater than the license privilege.

1.17 File specification Tokens

When passing file specification into the Sertainty UXP system, supported substitution tokens may be used to

permit evaluation at runtime. For example, when writing scripts that may be ported to other physical machines,

one should use the token $(HOME) to represent the current user’s home folder. This would permit shared

scripts, even across operating system platforms.

Example: $(HOME)/myid.iic would be replaced with /Users/Greg/myid.iic, where /Users/Tom may be the

home folder for a user on a MacOS system.

Table 7 – Supported Tokens

Name Description

$(APPDATA)
Replaces the token with current user’s

application data path.

$(COMMONHOME)
Replaces the token with the Sertainty

common home path.

 Copyright © 2020, Sertainty Corporation

19

V3.2.0.

Name Description

$(DATE)
Replaces the token with the current date

using the format YYYYMMDD.

$(DATETIME)

Replaces the token with the current date

and time using the format

YYYYMMDDhhmm.

$(DAY) Replaces the token with the ISO day

number.

Ex: file$(DAY).txt would generate

file01.txt when the current day of the

month is the 1st.

$(DESKTOP)
Replaces the token with the user’s

desktop path.

$(DOCUMENTS)
Replaces the token with the user’s

documents path.

$(DOWNLOADS)
Replaces the token with the user’s

downloads path.

$(HOME)
Replaces the token with the current home

directory path.

$(LOG) Replaces token with Sertainty log folder.

$(MONTH) Replaces the token with the month

number.

Ex: file$(MONTH).txt would generate

file07.txt if the month is July.

$(SEQUENCE) Replaces the token with a unique

identifier that makes the specification

unique. If the filename portion of the path

contains $(SEQUENCE), a unique

timestamp and sequence will be included

and cause a new file to be created for

every automator event. If a single file is

desired for all events within an automator,

exclude the $(SEQUENCE) tag.

Ex: mylog$(SEQUENCE).log

$(SERTAINTYHOME)
Replaces the token with the current

Sertainty home directory path.

$(SHARED)
Replaces the token with the current

shared Sertainty directory path.

$(TEMP)
Replaces the token with a temporary

folder path.

$(UXP_FILENAME)

Replaces the token with the current UXP

Object name. If there is no current UXP

Object, the token will be replaced with

the token unknown.

$(UXP_FOLDER)
Replaces the token with the current UXP

Object location. If there is no current UXP

 Copyright © 2020, Sertainty Corporation

20

V3.2.0.

Name Description

Object, the token will be replaced with

the current working folder.

$(WORKFLOWCONFIG)
Replaces the token with the agent home

data path.

$(WORKFLOWHOME)
Replaces the token with the active agent

configuration data path.

$(WORKFLOWHOST)
Replaces token with current workflow

host folder.

$(YEAR)

Replaces the token with the year number.

Ex: file$(YEAR).txt would generate

file2018.txt

1.18 Preferences

Preferences are used to control component behavior. There are two levels of preferences: system and user

preferences. System preferences affect all UXP Object users while user preferences are local to the current

user.

Preferences are set and retrieved using function calls within the Sertainty API.

Preferences are located in the InitPath as defined in boot.ini. See the section on deployment for detailed

information on the boot.ini file.

The naming convention is as follows:

User preferences:

sf_<platform>_<os_user>.ini

System preferences:

sf_<platform>.ini

Note: The INI files described here may not be compatible with generic INI parsers due to the use of the ‘\’

character. Sertainty considers a ‘\’ as an escape character. To embed a ‘\’ as a literal value, the reverseslashes

must be doubled, i.e. \\. The preferences processor will correctly interpret double ‘\’ characters as a single ‘\’.

The following preferences are supported:

Table 8- System Preferences

Preference Data Type Description

agentInterval Integer When the Agent is running, specifies the number of

seconds between attempted message deliveries.

Default: 60

agentLogging Integer Sets the logging level for the UXP Object Agent.

Possible values:

 Copyright © 2020, Sertainty Corporation

21

V3.2.0.

Preference Data Type Description

 0. Logging is disabled

 1. Log only fatal errors

 2. Log severe errors

 3. Log all errors and warnings

 4. Log everything

 5. Log debugging information

Default: 0

agentEnvInterval Integer When the agent is running, specifies the number of

minutes between hardware/network/location scan

operations.

Default: 15

agentLIcenseInterval Integer When the agent is running, specifies the number of

minutes between license refresh operations.

Default: 720

agentRefreshInterval Integer When the agent is running, specifies the number of

seconds between refresh operations.

Default: 600

CommonHome URL Specifies a network accessible location from which

home UXP Object library data may be found. This is

typically used to enforce corporate rules and application

features.

Default: Empty

disableStringEncoding

Boolean Disables string encoding for external logs and other text-

based files. Typically, this should only be set when

troubleshooting Sertainty application behavior.

Default: false

driveLogging Integer Sets the logging level for a drive-mounted UXP Object.

Possible values:

 0. Logging is disabled

 1. Log only fatal errors

 2. Log severe errors

 3. Log all errors and warnings

 4. Log everything

 5. Log debugging information

Default: 0

fileWatchInterval Integer For file watch operations, specifies the number of

milliseconds between file change detection operations.

To quickly detect file changes, set the value low. For

less CPU consumption, but slower change detection, set

the value higher.

 Copyright © 2020, Sertainty Corporation

22

V3.2.0.

Preference Data Type Description

Default: 10000

installerLogging Integer Sets the logging level for the installer utility.

Possible values:

 0. Logging is disabled

 1. Log only fatal errors

 2. Log severe errors

 3. Log all errors and warnings

 4. Log everything

 5. Log debugging information

Default: 0

locationScanOption Integer Specifies the type of location scanning invoked by the

UXP Engine.

Possible values:

0. Scanning is disabled

1. Use only Sertainty trusted server

2. Use Sertainty trusted server plus other available

GPS and location resources.

Default: 2

machineChallenges Integer Specifies the default number of challenges when

generating a machine ID user.

Default: 10

maxChallenges Integer Specifies the maximum number of challenges per user.

The absolute maximum is 999.

Default: 30

maxdeliveryattempts Integer When attempting to send a message, this specifies the

maximum number of attempts before permanently

discarding the message.

Default: 1

maxSplits Integer Specifies the maximum number of splits that will be

created when a UXP split operation is performed.

Default: 100

minChallengeLength Integer Specifies the minimum length for a challenge name and

value.

Default: 3

minChallenges Integer Specifies the minimum number of challenges for an

identity. Three is the absolute minimum.

Default: 10

 Copyright © 2020, Sertainty Corporation

23

V3.2.0.

Preference Data Type Description

quickProtectLogging Integer Sets the logging level for a QuickProject operations.

Possible values:

 0. Logging is disabled

 1. Log only fatal errors

 2. Log severe errors

 3. Log all errors and warnings

 4. Log everything

 5. Log debugging information

Default: 0

scriptLogging Integer Sets the logging level for script utility operations.

Possible values:

0. Logging is disabled

1. Log only fatal errors

2. Log severe errors

3. Log all errors and warnings

4. Log everything

5. Log debugging information

Default: 0

smtpConnectionTimeout Integer When attempting to connect to an SMTP server on

behalf of message delivery, this specifies the number of

milliseconds to wait for a valid connection.

Default: 3000

smtpResponseTimeout

Integer When attempting to deliver a message, this specifies the

number of milliseconds to wait for message delivery

confirmation.

Default: 20000

startAgent Boolean

When True, the UXP Object core library will attempt to

start an Agent if one is not already running.

Default: True

taskWatchInterval Integer For workflow change task operations, specifies the

number of milliseconds between file change detection

operations. To quickly detect file changes, set the

value low. For less CPU consumption, but slower

change detection, set the value higher.

Default: 10000

useComplexChallengeRules Boolean When True, challenge responses must contain at least 1

uppercase, 1 lowercase, 1 digit and 1 special character.

Warning: When set, the response values become

conventional passwords and minimize the strength of

the Sertainty authentication model.

Default: False

 Copyright © 2020, Sertainty Corporation

24

V3.2.0.

Preference Data Type Description

vfsStartClientDelay Integer Specifies the wait time in milliseconds when mounting a

Drive device.

Default: 2000

 Copyright © 2020, Sertainty Corporation

25

V3.2.0.

Table 1 – User Preferences

Preference Data Type Description

mountpath Directory When mounting a UXP Object as a Drive
device, this specifies the mount point for the
device.

Default: ${Home}/Sertainty Drives

PreferenceBuffers Interger Specifies the default number of cache
buffers for UXP Object virtual file when
using QuickProtect or QuickMount.

Default: 0

PreferenceCompanyName String Specifies the company name when creating
UXP Objects when using QuickProtect.

Default: Empty

PreferenceCompanyWebPage String Specifies the company web page when
creating UXP Objects when using
QuickProtect.

Default: Empty

PreferenceDefaultDomain String Specifies the default license domain when
using QuickProtect.

Default: Public

PreferenceDefaultID String Specifies the default UXP ID to use when
using QuickProtect.

PreferencePageSize Integer Specifies the default page size for a UXP
Object virtual file when using QuickProtect
or QuickMount.

Default: 0

PreferenceUseReadWriteArchitecture Integer When True, the default UXP Object
architecture is read-write when using
QuickProtect or QuickMount.

Default: False

uxphome Directory Specifies the folder containing required data
for the UXP Object libraries. Typically, this
would not be used unless alternate folder
will be used as the home folder.

Default: Empty

Note: all preference names are case sensitive.

1.19 Environment Variables

The following system environment variables can be set to modify the UXP library behavior:

Table 10 – Environment Variables

 Copyright © 2020, Sertainty Corporation

26

V3.2.0.

Variable Data Type Description

UXPDATAPATH String Specifies an alternate folder at which cached data will be
managed. If empty, the standard data location will be used.

Default: Empty

UXPHOME String Specifies an alternate folder for the home location. If empty,
the standard home location will be used.

Default: Empty

UXPINITPATH String Specifies an alternate folder at UXP init files will be
managed. If empty, the standard init location will be used.

Default: Empty

UXPLOGPATH String Specifies an alternate folder at which log files will be
written. If empty, the standard log file location will be used.

Default: Empty

2 UXP Object Construction and Access

2.1 Building your Application

Presently, the supported interfaces are C, C++ and C#; mobile – Android and iOS . Other languages interface

wrappers are planned for a future release of the tool kit.

After installing the toolkit, several folders will contain the necessary components to compile and link your

applications.

The installation folder contains the following developer folders:

• developer/bin

Contains the necessary files for the UXP Technology.

Linux Libraries

libboost_program_options.so

libboost_atomic.so

libboost_thread.so

libboost_date_time.so

libboost_filesystem.so

libboost_system.so

libSertaintyCore.so

boot.ini

MacOSX Libraries

libSertaintyCore.2.dylib

libosxfuse_i64.2.dylib

boot.ini

 Copyright © 2020, Sertainty Corporation

27

V3.2.0.

Windows Libraries

ssleay32.dll

libeay32.dll

SertaintyCore2.dll

boot.ini

Note: All UXP Object libraries are built on MacOSX and Linux using cdecl function
declarations.

For Windows, libraries are built using stdcall. A caller must adhere to correct call standard or
incorrect behavior may occur.

All libraries are 64 bit and are compatible with standard compilers.

• developer/documents

• Sertainty Data Services Guide

The Data Services Guide describes a collection of service extensions to the UXP Technology

object. The Data Services share metadata and setup; however, each service extension can be

utilized independently.

• Sertainty Developer Guide

The Developer Guide contains a full description of the core UXP Technology.

• Sertainty KCL Guide

The KCL Guide describes the KCL environment and how to use it for custom KCL
identities.

• Sertainty Workflow Guide

The Workflow Guide contains details focused on Workflow enablement using the Sertainty
Agent, UXL Scripting and UXP Managed Identity creation

• Public API

The API guide is a reference guide for the public UXP functions. Like the Developer Guide,
it comes in multiple formats.

The following languages interfaces are supported:

o C language

o C++ language that requires the standard C++ environment.

o C# language

• developer/examples

Contains sample scripts and code.

Table 2 – Code samples

Sample Description

Bytearrays.c, c++, c#, uxl Demonstrates the use of uxl ByteArray which is

a Sertainty Data Structure that is used to handle binary

and ascii data.

The sample demonstrates writing data to and reading

data from the uxl ByteArray as well as loading contents

of a file read from the file system into the uxl ByteArray -

 Copyright © 2020, Sertainty Corporation

28

V3.2.0.

using C, C++ and C# language interfaces and UXL

scripting language

1-Delegate_create_db.c, c++,c#, uxl This sample demonstrates how to create a new Data

Services Database using an existing ID that will be

designated as the DB owner ID. The DataServices db

stores and manages Delegate IDs, Users and Delegate

subscribers.

2-Delegate_open_session.c,

c++,c#, uxl

Demonstrates opening an existing Data Services (DS)

Database. This sample allows you to open an existing DS

Database and authenticate into it to create a DS Session.

3-Delegate_set_server.c, c++,c#,

uxl

This sample sets the Delegate Server location in the

DataServices database. The server URL will be linked and

embedded in each auto-generated delegate user identity -

the proxy identity. Once activated by a UXP Object

containing the delegate identity, the URL will be contacted.

4-Delegate_add_users.c, c++,c#,

uxl

Demonstrate adding a new user to Data Services (DS)

Database. A user is only added if it doesn't already exist in

the DB.

5-Delegate_add_delegates.c,

c++,c#, uxl

This demonstrates within the Data Services database:

 (1) creating a new Delegate Identity

 (2) creating new User2

 (3) adding User2 as a Subscriber to the Delegate ID

subscription list

The Delegate Identity, new User 2 and Subscriber are only

added if it doesn't already exist in the Data Services db.

6-delegate_get_info.c, c++, c# Displays detailed information from the Data Services

Database as follows:

 (1) Delegate IDs

 (2) Delegate Subscribers (from User IDs in the Data

Services db)

 (3) User IDs

A Delegate ID is a proxy ID with a subscription group in

Data Services db. Users in the Data Services db can be

added as Delegate Subscribers to the Subscription List for

the Delegate ID.

A User can an owner of a Delegate ID. A Delegate owner

(User ID) is not required to be a subscriber to a Delegate

ID. All User IDs are listed in the Data Services Database.

Helloworld.c, c++, c#, ..uxl Demonstrates the initialize library call necessary before any

UXP ID or UXP functions can be called - using C, C++ and

C# language interfaces; and uxl scripting

 Copyright © 2020, Sertainty Corporation

29

V3.2.0.

Id_from_xml.c, c++, c#. .uxl This sample demonstrates constructing a UXP Identity file

(*.iic) from an ID Definition XML Source file (*.xml). The

generated UXP Identity file (*.iic) can be used to generate a

UXP Object.

Id_session.c, c++, c#, .uxl This sample demonstrates how to authenticate into an ID

session and use it to auto-authenticate, also known as,

Single Sign-On, into a UXP Object.

A UXP Object requires authentication of the prospective

user (process or person). ßAccess will only be granted after

a successful authentication.

Having to individually authenticate into multiple UXP

Objects is time-consuming. Also time-consuming is

authenticating into a single UXP Object multiple times. As a

convenience, a UXP Identity can be used for a Single Sign-

On session. A Single Sign-On session allows automatic

authentication into UXP Objects that were created using

that same UXP Identity.

 For authentication, there are two approaches to

programmatically seeking authorization. The first approach

is to declare a function callback that is called when the

system presents challenges. The callback function is given

the list of challenges that it must process and return. The

callback function is called until resolution is reached.

The second uses a looping process to allow the program to

handle the challenge list manually. Responses are then

given back to the system and the authentication loop

continues until a resolution is reached.

MappingsCAPI.cs C# function mappings.

Mappings.cs C# function mappings.

Open_uxp_auth.c, c++, c#, .ux; Demonstrates how to open and interactively authenticate a

UXP file using known challenge/response pairs and read

contents of virtual files protected within a UXP file. using C,

C++ and C# language interfaces

Sample_config.c, c++, c#, .uxl Demonstrates fetching current machine’s location

information using the Sertainty SDK; Similarly, the

machine’s network information can also be fetched from

the machine’s configuration. This sample only

demonstrates location information for brevity - using C,

C++ and C# language interfaces

Sample_sm_exchange.c, c# Sample program using C language interface and SMEX.

Uses XML to create ID

 Copyright © 2020, Sertainty Corporation

30

V3.2.0.

 (1) Using either an existing sender UXP ID or create an

on-demand, one-time temporary source ID

 (2) Starts a SSO login session - existing or new

 (3) Select existing destination UXP ID or create an on-

demand, one-time temporary destination ID

sample_workflow_auto_auth.c,

c++, c#

Demonstrates a mini workflow, resulting in automatic

UXP authentication/ SSO;

 (1) create ID from XML

 (2) Create UXP from ID & adds data

 (3) Closes the UXP

 (4) Auto authenticates success / fail

 (5) on success, extracts the data

 (6) closes UXP

sample_auto_id.xml Example UXP ID xml source definition used to

demonstrate automatic UXP authentication for

sample_workflow_auto_auth.c, c++ or c#

sample_auto_text.xml Secure text used to demonstrate automatic UXP

authentication utilized by sample_workflow_auto_auth.c,

c++ or c# sample

Sample_auto_text.c, .h Two files are generated from the secure text file

sample_auto_text.xml; demonstrates secure, in-memory,

text strings, utilized by sample_workflow_auto_auth.c,

c++ or c# sample

Sample_workflow_create_id_uxp.c,

c++,c#, uxl

Demonstrates a mini workflow, resulting in UXP

authentication and data extraction

 (1) create ID from XML

 (2) Create UXP from ID & adds data

 (3) Closes the UXP

 (4) Authenticates success / fail

 (5) on success, extracts the data

 (6) closes UXP

Sample_workflow_delegate.c, c++,

.uxl

 A delegate can be used to allow a user to access a UXP

object without having an identity embedded within the UXP.

Access is still controlled by the data owner, but is managed

via the delegate database– using UXL scripting language

This sample exercises various Delegate Service operations
using SDK.

1. Users, IDs, and Delegates are added to the Data
Services database.

2. Users subscribe to User Delegates

3. UXP is created with Delegate

 Copyright © 2020, Sertainty Corporation

31

V3.2.0.

4. Upon access to UXP by a Subscriber of the

Delegate, subscription metadata like max access, and

access count are observed.

A UXP identity database is a UXP object that permits SQL

access. The database is used to manage users and

delegate definitions.

A Delegate Identity can be used to allow a user to access a

UXP Object without having an identity embedded within the

UXP Object. Access is still controlled by the data owner,

but is managed via the delegate database.

Sample_workflow_kcl.c, c++ Demonstrates creation of an ID from KCL ID configuration –

using KCL language

Demonstrates a mini workflow:

 (1) create ID from KCL,

 (2) Create UXP from ID & adds data,

 (3) Closes the UXP,

 (4) Authenticates success / fail,

 (5) on success, extracts the data,

 (6) closes UXP

Sample.kcl Demonstrates creation of an ID from KCL ID

configuration – using KCL language

Sample_workflow_sm.c, c++, UXL Sertainty SmartMessage sample program using C

language interface.

New ID is used as a single sign-on object SmartMessage

created linking ID.

 (1) Create ID from XML

 (2) New ID is used to in a single sign-on session

 (3) A SmartMessage is creating linking the ID

 (4) Closes the UXP

 (5) Authenticates success / fail

 (6) on success, extracts the data

 (7) closes UXP

Sample_workflow_sql.c, c++, .sql Sample workflow using UXP as a SQL database within a

UXP Object. Uses XML to create ID

 (1) Creates ID from xml

 (2) Creates UXP from ID

 (3) Creates SQL tables within UXP object

 (4) Close / Re-opens UXP

 (5) Accesses SQL / data

 Copyright © 2020, Sertainty Corporation

32

V3.2.0.

Uxp_from_id.c, c++, c#, .uxl This sample demonstrates how to create a UXP Object

using a UXP Identity and add data files into the created

UXP Object.

Sample_workflow_sql.c, c++, .sql Sample workflow using UXP as a SQL database within a

UXP Object. Uses XML to create ID

 (1) Creates ID from xml

 (2) Creates UXP from ID

 (3) Creates SQL tables within UXP object

 (4) Close / Re-opens UXP

 (5) Accesses SQL / data

Sample scripts are also provided to demonstrate the UXL Script Engine. Contains the header files for C

and C++ languages.

2.1.1 Deployment

To deploy applications that utilize UXP Technology the following guidelines apply:

2. Place the necessary libraries and files in your preferred bin folder:

• Linux Libraries

• libboost_program_options.so

• libboost_atomic.so

• libboost_thread.so

• libboost_date_time.so

• libboost_filesystem.so

• libboost_system.so

• libSertaintyCore.so

• boot.ini

• MacOSX Libraries

• libSertaintyCore.2.dylib

• libosxfuse_i64.2.dylib

• boot.ini

• Windows Libraries

• ssleay32.dll

• libeay32.dll

• SertaintyCore2.dll

• boot.ini

3. Edit boot.ini

This file contains the various folders used by Sertainty UXP Technology. Change the locations
to your preferred locations prior to running UXP Technology.

Note: boot.ini must be in the same folder as the SertaintyCore shared library.

 Copyright © 2020, Sertainty Corporation

33

V3.2.0.

The following settings are found in boot.ini:

SharedPath=C:\kit

HomePath=C:\kit\home

InitPath=C:\kit\init

DataPath=C:\kit\data

LogPath=C:\kit\log

WorkoadPath=C:\kit\home

DeveloperPath=C:\kit\developer

4. The following files must be placed in the designated Sertainty home folder:

• emailpresets.xml

This file contains email presets for defining email delivery servers.

• filetypes.xml

This file contains simple file type associations for UXP operations.

• init.xml

This file contains application settings that can be managed by an administrator.

• rulepresets.xml

This file contains rule data that can be applied when constructing identities.

• sertainty.lic

The Sertainty License is necessary for all operations. It controls what functions are
available to the application.

• sertainty*.rsf

This file contains critical data utilized by the UXP Technology.

2.2 Sample Native Construction Flow using C Language

Included in the SDK example folder are source files that demonstrate how to create a UXP Object from C,

C++, and C#. The following provides a step-by-step walk-through of building a UXP Object. The examples

utilize the native C-language interface. C++ and C# interfaces are also available.

a. Validate the library license

When a UXP object-aware application starts, it must enable the UXP Engine with a license

validation call. The call checks the current runtime license and enables subsequent calls to

library functions. Without a valid license, an application cannot call any other UXP Object

function successfully.

The call is:

 if (!uxpsys_initializeLibrary(error-buffer,

argc,
argv,
“*”,
“Sertainty”))

 {

 Copyright © 2020, Sertainty Corporation

34

V3.2.0.

 handle error
 }

b. Create a UXP Identity

A UXP Identity can be created from a source definition XML document or via the API. The

Sertainty Assistant and the UXL Script utility have methods for creating a UXP Identity.

Note: The Assistant contains the required KCL Code that is necessary to construct a UXP

Object.

 uxpsys_fileReadAll(callstatus, “myid.xml”, buffer);

uxpid_publishToFile(callstatus,
“myid.iic”,
 uxpba_getData(buffer),
 ModifierReplace);

We now have a binary UXP Identity called myid.iic.

c. Create a UXP Object

uxpFileHandle myUxp = uxpfile_newHandle(argc, argv)

In this example, we create a handle for a UXP Object called myUxp. At this point,
myUxp is not attached to usable physical UXP Object.

Uxpfile_openNewFile(myUxp, “myuxp.uxp”, “myid.iic”, IdFile,

ModifierReplace, 0)

This will physically create a new UXP Object on disk called myuxp.uxp and will replace

any existing file by that name.

d. Set optional UXP Object attributes

uxpfile_setName(myUxp,”My Data”);
uxpfile_setDescription(myUxp,”This is my data”);
uxpfile_setCompanyName(myUxp,”ABC Corp”);
uxpfile_setOwnerName(myUxp,”Greg Jones”);

In this example, we have set the common UXP Object attributes using the API.

e. Add virtual files to the UXP Object

uxpfile_addVirtualFromFile(myUxp,”MyFile1”, “mydata.dat”,

-1,-1, ModifierCompress)
uxpfile_addVirtualFromFile(myUxp,”MyFile2”, “mydata2.dat”,

-1, -1, 0)

The specified file is copied to the UXP Object. The copy operation will also protect the data
from further unauthorized access with the UXP Object.

f. Save and close the UXP Object

uxpfile_close(myUxp);

 Copyright © 2020, Sertainty Corporation

35

V3.2.0.

The close operation saves any remaining metadata and marks the UXP Object as valid.

g. Open the UXP Object for access

uxpfile_openFile(myUxp, “myuxp.uxp”, ShareAll)

This will open the file myuxp.uxp as a UXP Object. Immediately, the UXP Engine will

attempt to validate the environment and execute KCL Code to determine who is trying to

access the UXP Object.

Status = uxpfile_authenticate(myUxp)

If the internal KCL Code requires, the status will indicate challenges must be met. In that

case, the API grants access to the challenges to be presented to the user. Once the user

has responded to the challenges, they will be sent back to the UXP Engine for validation.

If all challenges were correctly met, the User is granted access to the UXP Object with the

privileges defined for the matching User Definition.

If the User incorrectly responded, the KCL Code can decide to further challenge the User

with additional prompts or deny access.

h. Checking for errors

For all activities, the caller can check for possible error conditions using the following routines:

uxpsys_hasError(myUxp)

This routine will return a 1 if an error has been detected for the prior call to the UXP Engine.

Char *bufptr = uxpfile_getErrorMessage(myUxp)

This routine will retrieve the error message from the prior call to the UXP Engine.

2.3 Required User Definition Elements

When a User Definition is defined, there are typically many challenge definitions associated with the User.

However, as a rule, each User Definition must have the following challenge types to allow any user to access

the protected object:

• USERNAME

The username is a keyword that uniquely identifies the user. It can be any number of printable
characters. As a recommendation, the length should be a minimum of eight characters.

The above must be created as required challenges.

 Copyright © 2020, Sertainty Corporation

36

V3.2.0.

2.4 Pre-Loading Responses

For automatic authentication, it is possible to push known responses into the UXP Engine prior to opening a

UXP Object. The advantage of this approach is to avoid prompting the caller with challenges to the user

identity.

For example, an application keeps sensitive data inside a UXP Object that is required to allow the application

to operate. The application will attempt to open the object and access data; however, the KCL Code rules

require proof of identity. Without pushing responses into the engine, the UXP Engine will attempt to prompt the

caller for the necessary proof.

Pre-loading responses only works with required challenges and must contain responses for all required

challenges for the User. If any challenge is missing in the pre-loaded responses, the UXP Engine will attempt

to prompt for the required data.

For example, a UXP Object has three required challenges: USERNAME, PASSPHRASE and CODE1. To

effectively avoid prompting, one must push a response for the username, the pass phrase and code1

challenges. If any are missing or incorrectly specified, the UXP Engine will reject the responses and prompt

the user for more proof.

Additionally, pre-loading responses does not guarantee unprompted access. If the KCL Code authentication

rules detect an anomaly, the u

0ser may still be prompted for additional proof of identity.

Note: If the KCL Code variable isWorkflow is set to true, the system will never prompt the user for

responses. This means that a workflow UXP Object can only be authenticated using pre-loaded

responses.

2.4.1 Opening an Existing UXP Object

Prior to any activity, the UXP Object will invoke the KCL Code routine Authentication::userSetup. This

routine typically sets the global variable settings that define the E-mail information and UXP Object options. It

is only called once.

After the setup routine returns, the UXP Engine must now identify the current user. In a loop, the UXP Engine

will call the routine Authentication::main until either the user is granted or denied access. All other events are

considered challenges that must be met by the user prior to the continuing the loop. The user cannot access

any resource within this UXP Object until access is granted by Authentication::main.

When developing a custom authentication routine, it must be noted that the UXP Engine responds to the

Authentication::main routine by way of the setAuthentication procedure. The setAuthentication procedure

sets the current user status and privileges.

Only two status values are interesting to the engine:

StatusAuthenticated

StatusNotAuthenticated

 Copyright © 2020, Sertainty Corporation

37

V3.2.0.

All other status values are translated into StatusChallenged. When Authentication::main exits, the UXP

Engine immediately checks the status. If it is not StatusAuthenticated or StatusNotAuthenticated, it

assumes that StatusChallenged is the current state. Given that, if you Authentication::main routine does not

explicitly set the status value, the UXP Engine may loop infinitely.

To avoid an infinite loop, always set the status and check the SessionFailureCount variable. There should

always be an escape mechanism that sets the status to StatusNotAuthenticated when

SessionFailureCount exceeds a reasonable value.

2.4.2 Adding a New Document to the UXP Object

To save a document, the UXP Object will generate random cloaking data that drives the cloaking algorithm.

Once the cloaking parameters are set, the specified user document is copied into the UXP Object and is

protected from any possible unauthorized access.

2.4.3 Accessing an Existing Document in the UXP Object

To access a protected document within the UXP Object, the UXP Engine first calls the KCL Code routine

Authentication::fileAccess. Within that routine, the owner can determine if the authenticated user can access

the specified file. Though not required, the Authentication::fileAccess gives the owner fine grain control over

UXP Object access. For example, the UXP Object may contain a file for two users to read; however, user two

may only read the document after user one has read and signed it.

2.5 UXP Callbacks

The UXP system uses callback functions to communicate with the caller. The following callback functions can

be defined:

• Display a simple message

This will be utilized for simple messages to be displayed to the user.

• Prompt the user for simple input

Prompts the user for a single response.

• Prompt the user for all required challenge input

The callback will contain a list of challenges that must be presented to the user. When completed, the

callback will return the responses to the UXP system for validation.

Note: A challenge callback is not required if the alternate authentication method is used. Instead, a list

of challenges will be returned directly with a get challenges call. Sertainty recommends using the

returned challenge list for processing challenges.

• Progress message

Displays a simple progress message for long operations.

 Copyright © 2020, Sertainty Corporation

38

V3.2.0.

• Progress indicator

Provides the caller with progress metrics.

• Record external event entry

Provides a method of recording UXP Object activity to a place other than the UXP Object.

• Record external log activity

Provides a method of recoding optional log data for support and advance problem resolution.

• Timeout indicator

Provides a mechanism to catch a UXP Object timeout. The owner of the UXP Object can specify the

amount of idle time that can pass before a UXP Object will automatically be closed. The callback can

catch the notification and can indicate to the UXP Engine to ignore the timeout and continue

processing.

Each callback accepts a pointer to a user-supplied data structure that will allow the caller to pass control and

necessary data back to the caller when the callback is invoked. For example, in a window manager, the

callback may need to invoke specific window controls to display a dialog box. The user-supplied data could be

a structure containing the necessary methods for invoking the dialog.

2.6 Sample Callback to Prompt the User for Challenges

/**
 * Gets challenges from the user
 * @param handle UXP entity handle
 * @param userData User data to pass through on callback
 * @return True if accepted. False if canceled
 */
static int privatePromptChallenges(uxpUXP entityHandle handle, void *userData)
{
 uxpDataBuffer *buf;
 char value[1000];
 int I,cnt;
 uxpListHandle chList;
 uxpChallengeHandle ch;

 printf(“%s\n”,”To verify your identity, please provide the following:”);

 chList = uxpGetChallenges(handle);
 cnt = uxplistCount(chList);

 buf = uxpNewBuffer();

 for (I = 0; I < cnt; i++)
 {
 ch = uxplistGetChallenge(chList, i);

 uxpchStartTimer(ch);

 for (;;)
 {
 printf(“%s> “, uxpchGetPrompt(ch, buf));
 gets(value);

 if (strlen(value) > 0)

 Copyright © 2020, Sertainty Corporation

39

V3.2.0.

 break;
 }

 uxpchEndTimer(ch);
 uxpchSetValueString(ch, value);

 uxpAddResponse(handle, ch);
 }

 return 1;
}

2.7 Application Example Scenarios

The following are typical scenarios that may benefit from UXP Identity (UXP ID) Technology:

1. Protecting files in the directory without requiring a UXP Object as a container. When utilized, this

approach is easier to understand and manage for non-technical users. For example, if one has a

computer folder containing valuable documents, a personal UXP Identity can take each document and

produce a protected counterpart in the same folder. The original could then be deleted. To access the

protected document, the owner would open the personal UXP Identity and request that the document

be unprotected, again, in the same folder.

Note: In all cases, the protected document can only be accessed by the owner of the UXP Identity.

2. Sending lightweight messages between trusted end points. For example, a power plant contains a

controller with a digital interface. The controller is responsible for managing power availability to various

geographic areas and can be managed remotely by a trusted console. In this case, the trust is two-way

in that the controller trusts that the commands are coming from the correct console, and the console

assumes that messages are being received and interpreted by the trusted controller.

With a UXP Identity, the controller and the console can send messages without fear. If constructed

appropriately, messages sent from the trusted console can only be constructed by that device located

in the correct geographic location. Plus, the user of the console is the only person that can

authenticate the console UXP Identity. On the controller side, a message can only be read and trusted

if it was protected according to the console UXP Identity. It cannot be read by any entity other than the

console user (which can be a machine) residing at the power plant.

3 Advanced Technologies

The UXP system has a number of advanced functions that can be used to not only increase the protection of a

UXP Object but allow a developer to increase security within the application.

3.1 SQL Engine

A UXP Object has two on-disk structure types used to manage its proprietary protection.

 Copyright © 2020, Sertainty Corporation

40

V3.2.0.

The first, and simplest form is the Write-Once architecture. This variant permits storing and accessing data;
however, it does not support updating existing entities within the UXP Object.

The second form allows full read-write capability within the UXP Object. This format also introduces an
embedded SQL engine that is used to manage the extended features.

The UXP SQL engine can be accessed by a licensed user to store highly structured data the same way one
would utilize standard commercial SQL database systems. The fundamental difference with the UXP SQL
engine is that it utilizes UXP protection and authentication protocols to manage the security of the data.

Once a Read-Write UXP Object has been created, a user may issue standard SQL statements to define
metadata and manage user data. Though the UXP SQL data is not viewed as virtual files like the unstructured
data within the UXP Object, it is protected and governed by the same UXP protocol.

Note: The UXP SQL engine cannot interact with existing unstructured data included as virtual files in the UXP
Object. The SQL data can co-exist with a virtual file within a UXP Object; it just cannot access or modify the
data. A future release may remove this restriction.

3.1.1 Features

The UXP SQL engine is based on a subset of SQLite. It supports the most common features of SQLite such

as:

• BEGIN TRANSACTION

• Built-in SQL functions

• COMMIT TRANSACTION

• CREATE INDEX

• CREATE TABLE

• CREATE VIEW

• INSERT

• ROLLBACK TRANSACTION

• SELECT

• UPDATE

• UPSERT

Unsupported:

• ATTACH database command.

• DETACH database command.

• Metadata table access.

• PRAGMA command.

• SAVEPOINT command.

Example:

uxp::sql::query q(&uxpobject);

q.prepare(“select c1,c2 from t1 where c3 = ?”);
q.bindValue(0,”greg”);
q.exec();

while (q.next())
{

 Copyright © 2020, Sertainty Corporation

41

V3.2.0.

 Std::cout << “c1: “ << q.valueText(0) << std::endl;
 Std::cout << “c2: “ << q.valueInt64(1) << std::endl;
}

q.finish();

3.2 Secure Variables

No matter how well on-disk data is protected, in-memory copies found in common variables represent a

significant risk. Simple reverse engineering of code by dumping memory can produce clear versions of

protected data.

The UXP system provides a simple library of secure variable management for common data types. The

following types are supported:

• Integers

• Double precision floating point numbers

• Strings

• Array of bytes

Each of the types masks the data and additionally adds tamper-resistant measures. This creates a significant

deterrent to kernel debuggers and memory scrapers.

Table 3 – Secure variable C++ classes

Variable Class Description

uxl::secureInt Manages secure 64-bit integers.

uxl::secureDouble Manages double precision numbers.

uxl::secureString Manages secure variable-length strings.

uxl::secureByteArray Manages secure variable-length byte array.

3.3 Secure String Constants

Most systems deploy static text for use within an application. Unless measures are taken, static text of a

sensitive nature can be discovered by scanning binary code and memory dumps. This is especially perilous

for a system like the UXP Engine. What good is a data protection scheme, if an unauthorized agent can

easily reverse engineer embedded hints to authentication and protection?

The UXP error messaging system provides an API to load and access secure strings. Secure strings are

stored as an external binary file that is created from a source XML document. Once compiled, the strings can

be loaded at runtime by an authorized agent and used by application for any purpose that requires static text.

 Copyright © 2020, Sertainty Corporation

42

V3.2.0.

Examples of strings that would benefit from secure string technology are passwords, context-sensitive test,

internal structure names, etc.

The format of a secure string source file is:

<TextBundle>
 <Text key="TXT_T_PASSWORD">fasdfasdfasdf</Text>
 <Text key="TXT_T_SPECIAL">This is a special string</Text>
 </TextBUndle>

Table 4 – Secure String XML tags and attributes

Tag Description

TextBundle The main tag for the bundle.

Text Defines a new string.

key

Defines the unique key that can be used to fetch the string content.

When the bundle is compiled, the key is stored in a generated file

as a #define.

To compile a secure string source document, run the SertaintyString utility. It is a console application that

must be run in a terminal shell.

SertaintyString command-line-arguments

Supported commands:

Sertainty Secure String Utility:
 -h [--help] Produce help message
 -s [--source] arg Source file defining secure strings..
 -o [--outfile] arg File to store secure strings.
 -c [--codefile] arg Generated code file.
 -i [--incfile] arg Generated code header file.
 -d [--domain] arg Domain name for secure strings.

 -b [--buffer] Write messages to embedded buffer instead of message file.
 -r [--replace] Replace existing output files.
 --k1 arg Security key. Must be 32 characters.
 --k2 arg Security key. Must be 32 characters.
 --k3 arg Security key. Must be number between 1 and 32.
 --k4 arg Security key. Must be number between 1 and 32.

Table 5 – Sertainty String Utility command-line arguments

Option Description

-h Generates a help listing.

-s source-file

Specifies the source XML document containing <TextBundle>

artifacts.

Required

 Copyright © 2020, Sertainty Corporation

43

V3.2.0.

Option Description

-o output-file

Specifies the name of the compiled text string file. It must only be a

file name as the system requires all compiled message files be

placed in the Sertainty home folder.

Required if the file option is used. Not required for buffer

option.

-b

Specifies the compiled messages will be encoded directly in a native

C or C++ file instead of a .msg file. The benefit is that there is no

external file to manage.

-c code-file

Specifies the generated code file that contains necessary

components to load the compiled string bundle. This file contains a

secret key that must be protected from unauthorized viewing.

The module also contains an initialization routine that must be called

by the application to load the compiled strings.

If the file type is cpp, the generated file is a C++ source module. If

the file type is c, the generated file is a C source module.

Required

-i include-file

Specifies the header file for the compiled strings. The compiled

string keys from the source document are defined here so that an

application may use them to fetch strings.

Required

-d domain-name

Specifies a name for the compiled message bundle. The name is

used when loading and fetching secure strings.

Required

-r

Replace existing files, if they exist.

Optional

--k1 value

Specifies a 32-character key used for string compilation.

Required

--k2 value

Specifies a 32-character key used for string compilation.

Required

--k3 value

Specifies an integer between 1 and 32 used for string compilation.

Required

--k4 value

Specifies an integer between 1 and 32 used for string compilation.

Required

To load secure text for access, use the init function found in the generated header file. The actual init function name is

formed by taking the designated message output file and appending “_init”. The function must be called once prior to

fetching any secure strings from the message file.

 Copyright © 2020, Sertainty Corporation

44

V3.2.0.

To fetch a secure string, use the uxl::message class in C++ or the uxlmsg_ C library.

For C++:

 /**
 * @brief Gets a secure text string. Secure strings are protected on disk
 * and in memory, meaning that a memory dump will expose nothing.
 * @param domain Secure string domain
 * @param id Message identifier
 * @return Text string
 */

 const std::string uxl::message::getSecureText(const std::string &domain,
 uxp_int16 id);

For C:

/**
 * @brief Gets a secure text string. Secure strings are protected on disk
 * and in memory, meaning that a memory dump will expose nothing.
 * @param status Status handle
 * @param outbuf Buffer to receive string
 * @param domain Secure string domain
 * @param id Message identifier
 */
void uxlmsg_getSecureText(uxpCallStatusHandle *status,
 uxlByteArray *outbuf,
 const char *domain,
 uxp_int16 id);

3.4 Custom error and text messages

The UXP error handling system utilizes two forms of static text. When creating an error message, a registered

error message array can be utilized to signal very detailed messages. Because the messages are registered,

a single error message can be use many times without duplicating static in-memory test.

A second feature of the messaging system is simple text messages. This is a variant of the error messaging

system that uses the static registered message text to define a static string one time, thus, avoiding

duplication. Additionally, by storing text in a messaging array, the static text cannot be used as attack point by

unwelcomed adversaries. If one embeds static text, a code dump may reveal proximity of critical code, thus,

providing a starting point for reverse-engineering private code.

To define text or error arrays, one must create two modules: a header file of fixed numeric constants, and a

source module that implements the static text as an array.

Sample error message header file:

#include "uxlcommon.h"

/* Error message identifiers */

typedef enum
{
 My_message_01 = 1001,
 My_message_02 = 1002,
 My_message_03 = 1003,

 Copyright © 2020, Sertainty Corporation

45

V3.2.0.

 My_message_04 = 1004,
 My_message_05 = 1005,
 My_message_06 = 1006,
 My_message_07 = 1007
} my_message_id_t;

/**
 * Simple class to register errors
 */

namespace mySpace
{

 class UXPLB_HIDDEN MyErrors
 {
 public:
 static void registerErrors(void);
 } ;
}

Sample error message code file:

#include "uxlmessage.h"
#include "uxlerrors.h"

static uxlMessageItem gl_msg_array[] = {
 { My_message_01, "The day %1 is invalid"},
 { My_message_02, "The procedure %1 was not found"},
 { My_message_03, "The day is wrong: %1 "},
 { My_message_04, "The sky is blue exists"},
 { My_message_05, "Invalid operation"},
 { My_message_06, "Invalid name"},
 { My_message_07, "Invalid type"},
 {
 0, ""
 }
};

void mySpace::MyErrors::registerErrors(void)
{
 uxl::message::loadMessages(gl_msg_array);
}

The above modules should be compiled and included in your application. The class method

mySpace::MyErrors::registerErrors() should be called one time prior to using the error messages.

Error messages support argument substitution. In the example, several messages have a percent character

followed by a number. The token represents a substitution value where the number is the relative argument

number to inserted into the final message. When logging an error with a message requiring an argument, one

must instantiate a message object with the designated error message identifier. Then, an argument must be

added to the message object. Next, the message can be passed through the exception system or by other

means of delivering a message. Upon reaching its destination, a message can be extracted, fully formatted

and ready to present to a user.

For simple text, the same process of defining text message must be followed. The main difference from error

messages, however, is that text messages are simple text that can be retrieved directly from the message

array.

Sample text message header file:

 Copyright © 2020, Sertainty Corporation

46

V3.2.0.

#include "uxlcommon.h"

/* Text message identifiers */

typedef enum
{
 text_0001 = 2001,
 text_0002 = 2002,
 text_0003 = 2003,
 text_0004 = 2004,
 text_0005 = 2005,
} text_id_t;

/**
 * Simple class to register text messages
 */
namespace mySpace
{

 class UXPLB_HIDDEN text
 {
 public:
 static void registerText(void);
 } ;
}

Sample text message code file:

#include "uxlmessage.h"
#include "text.h"

static uxlMessageItem gl_msg_array[] = {
 { text_0001, "Member foobar expires within 3 days." },
 { text_0002, "Member \"%1\" has expired." },
 { text_0003, "Member \"%1\" expires today." },
 { text_0004, "Member \"%1\" expires tomorrow." },
 { text_0005, "Member \"%1\" has no privileges." },
 {
 0, ""
 }
};

void mySpace::text::registerText(void)
{
 uxl::message::loadText(gl_msg_array);
}

Like error message, the above text modules should be compiled and included in your application. The class

method mySpace::text::registerText() should be called one time prior to using the text messages.

To use a text message, call the uxl::message::getText(id) where id is the desired text identifier.

Example:

Std::string t = uxl::message::getText(text_0001);
std::cout << “Text: “ << t << std::endl;
Member foobar expires within 3 days.

 Copyright © 2020, Sertainty Corporation

47

V3.2.0.

Note: all user-defined error and text message identifiers must be greater than 1000. If less than 1000, custom identifiers

may conflict with intrinsic UXP errors and text messages. The above samples assume C++ as the native language;

however, a developer may use the C language since the error and text message construction will be the same.

3.5 Building native UXL functions

If the UXL language system requires additional functionality, it’s possible to write custom functions that can be

called from UXL scripts, including the Workflow Data Protector.

Native functions can be built using any native language; however, the main function definition must be done in

C++. Once defined, the new functions are placed inside a dynamic shared library, which can be loaded by the

UXL language system.

3.5.1 Getting started

Two modules must be built based on the C++ base classes uxp::scriptPlugin and uxp::scriptFunction. The

base classes are found in module uxpscript.h.

The class uxp::scriptPlugin defines the linkage that must occur between the UXL engine and the native UXL

function. It contains two required functions that are used by the UXL engine to recognize the native functions.

Only one instance of uxp::scriptPlugin can exist within a shared library and must be visible externally as the

name uxp_scriptplugin. When the shared library is loaded, the UXL engine attempts to locate the

uxp_scriptpugin object and query the object for defined functions.

A native function is derived class that extends the class uxp::scriptFunction. The following table describes the

uxp::scriptFunction class.

Table 6 – Native function methods

Function Description

Constructor(package, name,

min, max)

Constructor for new object. It defines the package name, function

name, minimum and maximum arguments for the new native

function.

execute()

A pure virtual function that must implemented in the new function

class. When a UXL engine calls the native function, the method is

called and permits execution of custom native code.

Must be implemented by developer.

getName()

Returns the name of the native function.

A function is called within UXL using the concatenation of the

package name and the function name.

Example: special::myFunc()

getPackageName() Returns the package name of the function.

 Copyright © 2020, Sertainty Corporation

48

V3.2.0.

Function Description

getArgCount()

Returns the number of arguments that have been passed into the

function at execution time. A function is defined as having a

minimum and maximum number of arguments. If a caller fails to

provide an acceptable number of arguments, an exception will be

thrown and execution will stop.

getArgument(offset)

Returns the request argument. The offset is zero-based and can be

a value ranging from the minimum number of arguments minus one

to the number returned by the getArgCount() minus one.

The returned value will be stored in a uxl::variant object.

setReturn(value)
Allows the custom function to provide a return argument to the

caller.

See the plugin sample modules sampleplugin.cpp and sampleplugin.h for help in building a native function.

To use the native functions, call the x::loadPackage UXL function. This will load the shared library and set up

the desired native functions within the library. The shared library must be within the normal search path for

shared libraries; otherwise, the load will fail.

3.6 SmartMessage

SmartMessage is a low-level protocol that can protect data in flight. Rather than sending a entire UXP Object,

with all its overhead, over a connection, SmartMessage permits a similar, yet light weight, alternative.

A message is protected similar to the contents of a UXP Object; however, it does not contain the KCL Code or

a virtual file system. There is a small header module, but for the most part, the message is much smaller than

the UXP Object counterpart.

A SmartMessage contains the following:

Table 14 – SmartMessage Properties

Property Optional Description

Created Yes Contains the creation date and time.

Data size No Contains the native size of the user data.

Flags No
Contains the original flags used to create the

message.

Internal header No
Contains private data necessary to managed

message content.

ID.DeviceID Yes Contains the physical device identifier.

ID.ExchangeIdentity Yes Contains the target ID unique identifier.

ID.Identity Yes Contains the ID unique identifier.

ID.IP Yes Contains the network IP address.

ID.Location Yes Contains physical address.

 Copyright © 2020, Sertainty Corporation

49

V3.2.0.

Property Optional Description

ID.LocationID Yes Contains the physical location identifier.

ID.Name Yes Contains the ID name.

ID.Personal1 Yes Contains the ID personal name.

ID.Trusted Yes
Contains a Boolean indicating whether the ID is

trusted.

ID.User Yes Contains the current session user name.

User data No Zero to ‘N’ bytes of user data.

The SmartMessage can exclude properties marked as optional at creation time. By removing optional

properties, the size of the SmartMessage is reduced by several hundred bytes.

Required workflow:

• A user must establish a session using a UXP Identity. The UXP Identity must have SmartMessage

privileges in order to create the SmartMessage.

• Choose a target UXP Identity for protecting the data. The target UXP Identity controls the access to

the new SmartMessage.

• Create a SmartMessage in a buffer or a file using the target UXP Identity. An optional modifier

ModifierMinSize can be set to exclude the optional properties.

• Append data to SmartMessage. An optional flag to compress data can be utilized.

• Close the new SmartMessage. From the point on, only a session using the target UXP Identity can

open and access the SmartMessage.

Sample Use-Case:

Secure Chat

• Two users wish to have a private, secure chat. Both user A and B must have valid UXP IDs.

• A chat server has the UXP Identities for both user A and B.

• User A logs into chat system using personal UXP Identity.

• User B logs into chat system using personal UXP Identity.

• User A locates user B in chat system.

• User A sends a SmartMessage to user B using user B’s UXP Identity. User B is the only entity that

can open and read the SmartMessage.

• User B replies to user A using user A’s UXP Identity. Again, only user A can open and read the

SmartMessage.

• Exchanges can be repeated as in a typical conversation.

• To end the chat conversation, user A and user B terminate their chat server session.

In the above use-case, even the chat server will not be able to read the messages that are being exchanged.

 Copyright © 2020, Sertainty Corporation

50

V3.2.0.

3.7 Anonymous SmartMessage Exchange (SMEX)

SmartMessage Exchange was engineered to facilitate secure communication and data interchange between

trusted endpoints and to provide protection for data in-flight. SMEX utilizes Just in Time (JIT) temporary

SmartID Technology, which enables secure data exchange using the lightweight SmartMessage. The JIT

Smart UXP Identities are short lived and are only valid for a single exchange session. It is impractical to break

into a JIT Smart UXP Identity, as the challenges are randomized during its creation, which results in every

new session being created with a different Smart UXP Identity.

In use cases where know Smart UXP Identities are being used for SmartMessaging, SMEX could further

obfuscate and protect the data exchange.

Workflow:

The following steps are required in order to establish and use SMEX to setup a secure communication

channel.

• SMEX Handshake

• Initialize SMEX

Both parties involved in an exchange session initialize SMEX locally. This will result in creation and

local activation of JIT Smart UXP Identities. JIT Smart UXP Identities will now be available for

exchange.

• Exchange JIT Smart UXP Identities

The parties exchange the JIT Smart UXP Identities in order to complete the final step of the

handshake.

• Start SMEX Session

Once the JIT Smart UXP ID is received from remote peer, it can be used to start SMEX session on an

already initialized SMEX. This will result in a SmartMessage Session being created between the two

JIT Smart UXP Identities.

SMEX is now ready to protect further exchanges between the peers.

• Secure Data Exchange

• Encode

Use the encode routine to protect data before transmitting to the remote peer in an SMEX Session.

• Transmit

Once encoded, the data can be safely transmitted to the remote peer.

• Decode

 Copyright © 2020, Sertainty Corporation

51

V3.2.0.

Use the decode routine in an SMEX Session to reveal the encoded data transmission received from

the remote peer.

• Alternate Handshake Workflow

o Initialize SMEX on Peer A

o Transmit Peer A JIT Smart UXP Identity to Peer B

o Initialize SMEX on Peer B and Start SMEX Session using Peer A’s JIT Smart UXP Identity on

Peer B

o Transmit Peer B JIT Smart UXP Identity d to Peer A

o Start SMEX Session using Peer B’s JIT Smart UXP Identity on Peer A

4 Sertainty UXP Identity (UXP ID)

A UXP ID is a special purpose UXP Object that contains a secure, portable identity. With a UXP ID, a UXP

Object-aware application can perform the following:

• Create a UXP Object without manually writing any UXL modules. A UXP Object created using this

technique will be governed by the rules within the UXP ID.

Example: Person A can provide a UXP ID that will allow person B to protect data that only person A

can access.

• Create a SmartMessage. A SmartMessage is a protected data entity that does not reside within a

UXP Object. The data can be an in-memory buffer or a persistent on-disk file.

Example: A SmartMessage Object would be useful for communications among secure peers, such as

utilities infra-structure or person-to-person links.

• Create a UXP Single-Sign-On. This UXP ID has only a single identity user and nothing more. This

would be useful for protecting web-sites, machine entry points, databases, etc.

A UXP ID contains the following public information:

• Name and address of UXP ID owner

• Unique UXP ID identifier

• Optional photo and business contact information

Native APIs are supported in C++ and C; other language interfaces are planned. The Workflow

Assistant fully implements the UXP ID technology, which can then be used by the UXP Technology.

4.1 UXP ID Construction

UXP Identity (UXP ID) data consists of several components to form a unique digital fingerprint of the client.

The basic components necessary to build a valid UXP ID are:

 Copyright © 2020, Sertainty Corporation

52

V3.2.0.

• Users Definitions

Each user definition contains the following components:

o Challenge pairs

A challenge is a setting that can only be met by the authentic user. The number of challenges
required to permit access is set by user preferences.

Many challenges are local prompt / response pairs. Others can be potentially be complex
responses in the form of biometric input.

In some cases, a challenge may require other trusted users to respond with a code that was
sent at authentication time.

o Device and location configurations

The KCL Code attempts to determine the state of its operating environment, including device
data, location data, software conditions and time. The user can set preferences that make
decisions based on trust and the environment.

Example: if a device is not recognized, a preference can indicate the user must respond
to an extra three challenges.

o Preferences or Rules

Preferences are various settings that determine the KCL Code behavior. Some preferences are
unique to the user, and some can be overridden by global preferences within the ID. The KCL
Code chooses the most restrictive setting when deciding between a user preference and a
global preference.

o Schedule

A schedule is a flexible calendar that determines when data can be accessed. It can be as
simple as picking a date to allow access, or it can be a perpetual setting such as allowing
access on Monday through Friday, 8AM to 5PM. Like preferences, a schedule can exist at the
user level and at the global level.

• UXP ID Definitions

A definition is the basis of UXP ID. It contains public information and protected information. The public
information is meant to be visible and should be considered when determining the validity of a UXP ID.

• Global device and location configurations

The KCL Code attempts to determine the state of its operating environment, including device data,
location data, software conditions and time. The user can set preferences that make decisions
based on trust and the environment.

Example: if a device is not recognized, a preference can indicate the user must respond to
an extra three challenges.

• Global preferences or rules

Preferences are various settings that determine the KCL Code behavior. Some preferences are
unique to the user, and some can be overridden by global preferences within the UXP ID. The KCL
Code chooses the most restrictive setting when deciding between a user preference and a global
preference.

• Global schedule

A schedule is a flexible calendar that determines when data can be accessed. It can be as simple
as picking a date to allow access, or it can be a perpetual setting such as allowing access on
Monday through Friday, 8AM to 5PM. Like preferences, a schedule can exist at the user level and
at the global level.

• Users

 Copyright © 2020, Sertainty Corporation

53

V3.2.0.

Users are required to authenticate the UXP ID. Each user within a UXP ID must also be a User
Definition. And, for a UXP ID to be valid, there must be at least one valid user.

A user can also be imported for another UXP ID. In this scenario, an imported user cannot be
changed, nor can any of the private user data be viewed. One would use an imported user to
construct a shared UXP ID that contains multiple users.

▪ Managed ID Interface (MID)

The MID interface is a simple API that enables a user to fully implement a UXP ID using an XML document.

The document schema defines all the required and optional artifacts that can contribute to a valid UXP ID. The

API is implemented in the UXP ID modules under UXP ID definitions.

4.1.1.1 Example of Full ID XML Schema, complete with one valid user

The following represents a full UXP ID XML schema, complete with one valid user:

<?xml version="1.0"?>
<!---->
<!-- ID Definition: My Personal -->
<!-- Date: 2018-03-15T10:17:10 -->
<!---->
<ID name="My Personal">
 <Description type="string"></Description>
 <Expiration type="string">2019-01-01T05:59:00</Expiration>
 <PersonalName1 type="string"></PersonalName1>
 <PersonalName2 type="string"></PersonalName2>
 <PersonalName3 type="string"></PersonalName3>
 <Address1 type="string"></Address1>
 <Address2 type="string"></Address2>
 <City type="string">Madison</City>
 <State type="string"></State>
 <Zipcode type="string"></Zipcode>
 <Phone1 type="string"></Phone1>
 <PhoneType1 type="string"></PhoneType1>
 <Phone2 type="string"></Phone2>
 <PhoneType2 type="string"></PhoneType2>
 <Phone3 type="string"></Phone3>
 <PhoneType3 type="string"></PhoneType3>
 <Photo type="string"></Photo>
 <Privileges type="string">Files,Messages,SSO,Imports</Privileges>
 <!---->
 <Rules>
 <Rule name="GeneralSetup">
 <AdvancedDataLogging type="bool">false</AdvancedDataLogging>
 <AlternateReality type="string"></AlternateReality>
 <Compliance type="date">03/14/2218 20:00</Compliance>
 <MaximumAccesses type="int">0</MaximumAccesses>
 <MaximumCycleFailures type="int">4</MaximumCycleFailures>
 <MaximumIdleTime type="int">500</MaximumIdleTime>
 <MaximumTotalFailures type="int">0</MaximumTotalFailures>
 <UseLocalTime type="bool">false</UseLocalTime>
 <Workflow type="bool">false</Workflow>
 </Rule>
 <!---->
 <Rule name="RestrictionsSetup">
 <ConfigurationAltReality type="bool">false</ConfigurationAltReality>
 <ConfigurationApproval type="bool">false</ConfigurationApproval>
 <ConfigurationDeny type="bool">false</ConfigurationDeny>
 <ConfigurationDestroy type="bool">false</ConfigurationDestroy>
 <ConfigurationPrompts type="int">0</ConfigurationPrompts>
 <EveryAuthenticationApproval type="bool">true</EveryAuthenticationApproval>
 <EveryAuthenticationPrompts type="int">4</EveryAuthenticationPrompts>
 <HardwareAltReality type="bool">false</HardwareAltReality>
 <HardwareApproval type="bool">false</HardwareApproval>

 Copyright © 2020, Sertainty Corporation

54

V3.2.0.

 <HardwareDeny type="bool">false</HardwareDeny>
 <HardwareDestroy type="bool">false</HardwareDestroy>
 <HardwarePrompts type="int">0</HardwarePrompts>
 <MovementAltReality type="bool">false</MovementAltReality>
 <MovementApproval type="bool">false</MovementApproval>
 <MovementDeny type="bool">false</MovementDeny>
 <MovementDestroy type="bool">false</MovementDestroy>
 <MovementPrompts type="int">0</MovementPrompts>
 <NetworkAltReality type="bool">false</NetworkAltReality>
 <NetworkApproval type="bool">false</NetworkApproval>
 <NetworkDeny type="bool">false</NetworkDeny>
 <NetworkDestroy type="bool">false</NetworkDestroy>
 <NetworkPrompts type="int">0</NetworkPrompts>
 <Preset type="string"></Preset>
 <ReadOnlyAltReality type="bool">false</ReadOnlyAltReality>
 <ReadOnlyApproval type="bool">false</ReadOnlyApproval>
 <ReadOnlyDeny type="bool">false</ReadOnlyDeny>
 <ReadOnlyPrompts type="int">0</ReadOnlyPrompts>
 <ScheduleAltReality type="bool">false</ScheduleAltReality>
 <ScheduleApproval type="bool">false</ScheduleApproval>
 <ScheduleDeny type="bool">false</ScheduleDeny>
 <ScheduleDestroy type="bool">false</ScheduleDestroy>
 <SchedulePrompts type="int">0</SchedulePrompts>
 <UntrustedSystemAltReality type="bool">false</UntrustedSystemAltReality>
 <UntrustedSystemApproval type="bool">false</UntrustedSystemApproval>
 <UntrustedSystemDeny type="bool">false</UntrustedSystemDeny>
 <UntrustedSystemDestroy type="bool">false</UntrustedSystemDestroy>
 <UntrustedSystemPrompts type="int">0</UntrustedSystemPrompts>
 <UntrustedTimeAltReality type="bool">false</UntrustedTimeAltReality>
 <UntrustedTimeApproval type="bool">false</UntrustedTimeApproval>
 <UntrustedTimeDeny type="bool">false</UntrustedTimeDeny>
 <UntrustedTimeDestroy type="bool">false</UntrustedTimeDestroy>
 <UntrustedTimePrompts type="int">0</UntrustedTimePrompts>
 </Rule>
 <!---->
 <Rule name="ConfigurationSetup">
 <Configurations />
 </Rule>
 <!---->
 <Rule name="AlertSetup">
 <EmailAddress type="string"></EmailAddress>
 <IncludeDevice type="bool">true</IncludeDevice>
 <IncludeLicense type="bool">false</IncludeLicense>
 <IncludeLocation type="bool">true</IncludeLocation>
 <SMSAddress type="string"></SMSAddress>
 <UseEmail type="bool">false</UseEmail>
 <UseSMS type="bool">false</UseSMS>
 </Rule>
 <!---->
 <Rule name="ApprovalSetup">
 <ExternalLength type="int">6</ExternalLength>
 <Approval name="6">
 <Enabled type="bool">false</Enabled>
 <Address type="string"></Address>
 <Description type="string"></Description>
 <Prompt type="string">6</Prompt>
 <Type type="string">SMS</Type>
 </Approval>
 </Rule>
 <!---->
 <Rule name="EventSetup">
 <EmailAddress type="string">0</EmailAddress>
 <ExternalKey type="string">0</ExternalKey>
 <LogAccesses type="bool">true</LogAccesses>
 <LogFailures type="bool">true</LogFailures>
 <LogMessages type="bool">true</LogMessages>
 <LogRepeats type="bool">true</LogRepeats>
 <RecordEmail type="bool">false</RecordEmail>
 <RecordExternal type="bool">false</RecordExternal>
 <RecordLocal type="bool">true</RecordLocal>
 <RecordRemote type="bool">false</RecordRemote>
 <RecordSMS type="bool">false</RecordSMS>
 <SMSAddress type="string">0</SMSAddress>

 Copyright © 2020, Sertainty Corporation

55

V3.2.0.

 <URL type="string">0</URL>
 </Rule>
 <!---->
 <Rule name="ScheduleSetup">
 <Enabled type="bool">true</Enabled>
 <DaySunday type="bool">true</DaySunday>
 <DayMonday type="bool">true</DayMonday>
 <DayTuesday type="bool">true</DayTuesday>
 <DayWednesday type="bool">true</DayWednesday>
 <DayThursday type="bool">true</DayThursday>
 <DayFriday type="bool">true</DayFriday>
 <DaySaturday type="bool">true</DaySaturday>
 <StartDay type="int">-1</StartDay>
 <StartHour type="int">-1</StartHour>
 <StartMinute type="int">-1</StartMinute>
 <StartMonth type="int">-1</StartMonth>
 <StartYear type="int">-1</StartYear>
 <EndDay type="int">-1</EndDay>
 <EndHour type="int">-1</EndHour>
 <EndMinute type="int">-1</EndMinute>
 <EndMonth type="int">-1</EndMonth>
 <EndYear type="int">-1</EndYear>
 </Rule>
 </Rules>
 <!---->
 <Users>
 <User name="youremail@someplace.com" type="Personal">
 <Enabled type="bool">true</Enabled>
 <Email type="string">youremail@someplace.com</Email>
 <Expiration type="string">2019-01-01T05:59:00</Expiration>
 <FormalName type="string"></FormalName>
 <Privileges type="string">Read,Write,Delete,Print,Copy,Owner</Privileges>
 <!---->
 <Private>
 <Masking type="string">0</Masking>
 <!---->
 <Rules>
 <Rule name="UserAdvancedSetup">
 <MaximumTime type="int">30</MaximumTime>
 <MaximumTotalTime type="int">99</MaximumTotalTime>
 <MinimumTime type="int">0</MinimumTime>
 <MinimumTotalTime type="int">0</MinimumTotalTime>
 </Rule>
 <!---->
 <Rule name="UserBasicSetup">
 <IgnoreCase type="bool">true</IgnoreCase>
 <IgnoreChars type="string"></IgnoreChars>
 <MinimumPrompts type="int">3</MinimumPrompts>
 </Rule>
 <!---->
 <Rule name="UserRecoverySetup">
 <MaximumFailures type="int">1</MaximumFailures>
 <MinimumCorrect type="int">5</MinimumCorrect>
 </Rule>
 </Rules>
 <!---->
 <Challenges>
 <Challenge name="ch01">
 <Enabled type="bool">true</Enabled>
 <Hashed type="bool">false</Hashed>
 <Prompt type="string">test1</Prompt>
 <Required type="bool">false</Required>
 <Response type="string">test1</Response>
 <Softkb type="bool">false</Softkb>
 </Challenge>
 <!---->
 <Challenge name="ch02">
 <Enabled type="bool">true</Enabled>
 <Hashed type="bool">false</Hashed>
 <Prompt type="string">test2</Prompt>
 <Required type="bool">false</Required>
 <Response type="string">test2</Response>
 <Softkb type="bool">false</Softkb>

 Copyright © 2020, Sertainty Corporation

56

V3.2.0.

 </Challenge>
 <!---->
 <Challenge name="ch03">
 <Enabled type="bool">true</Enabled>
 <Hashed type="bool">false</Hashed>
 <Prompt type="string">test3</Prompt>
 <Required type="bool">false</Required>
 <Response type="string">test3</Response>
 <Softkb type="bool">false</Softkb>
 </Challenge>
 <!---->
 <Challenge name="ch04">
 <Enabled type="bool">true</Enabled>
 <Hashed type="bool">false</Hashed>
 <Prompt type="string">test4</Prompt>
 <Required type="bool">false</Required>
 <Response type="string">test4</Response>
 <Softkb type="bool">false</Softkb>
 </Challenge>
 <!---->
 <Challenge name="ch05">
 <Enabled type="bool">true</Enabled>
 <Hashed type="bool">false</Hashed>
 <Prompt type="string">test5</Prompt>
 <Required type="bool">false</Required>
 <Response type="string">test5</Response>
 <Softkb type="bool">false</Softkb>
 </Challenge>
 <!---->
 <Challenge name="ch06">
 <Enabled type="bool">true</Enabled>
 <Hashed type="bool">false</Hashed>
 <Prompt type="string">test6</Prompt>
 <Required type="bool">false</Required>
 <Response type="string">test6</Response>
 <Softkb type="bool">false</Softkb>
 </Challenge>
 <!---->
 <Challenge name="ch07">
 <Enabled type="bool">true</Enabled>
 <Hashed type="bool">false</Hashed>
 <Prompt type="string">test7</Prompt>
 <Required type="bool">false</Required>
 <Response type="string">test7</Response>
 <Softkb type="bool">false</Softkb>
 </Challenge>
 <!---->
 <Challenge name="ch08">
 <Enabled type="bool">true</Enabled>
 <Hashed type="bool">false</Hashed>
 <Prompt type="string">test8</Prompt>
 <Required type="bool">false</Required>
 <Response type="string">test8</Response>
 <Softkb type="bool">false</Softkb>
 </Challenge>
 </Challenges>
 </Private>
 <!---->
 <Rules>
 <Rule name="ConfigurationSetup">
 <Configurations />
 </Rule>
 <!---->
 <Rule name="ApprovalSetup">
 <ExternalLength type="int">6</ExternalLength>
 <Approval name="6">
 <Enabled type="bool">false</Enabled>
 <Address type="string"></Address>
 <Description type="string"></Description>
 <Prompt type="string">6</Prompt>
 <Type type="string">SMS</Type>
 </Approval>
 </Rule>

 Copyright © 2020, Sertainty Corporation

57

V3.2.0.

 <!---->
 <Rule name="ScheduleSetup">
 <Enabled type="bool">true</Enabled>
 <DaySunday type="bool">true</DaySunday>
 <DayMonday type="bool">true</DayMonday>
 <DayTuesday type="bool">true</DayTuesday>
 <DayWednesday type="bool">true</DayWednesday>
 <DayThursday type="bool">true</DayThursday>
 <DayFriday type="bool">true</DayFriday>
 <DaySaturday type="bool">true</DaySaturday>
 <StartDay type="int">-1</StartDay>
 <StartHour type="int">-1</StartHour>
 <StartMinute type="int">-1</StartMinute>
 <StartMonth type="int">-1</StartMonth>
 <StartYear type="int">-1</StartYear>
 <EndDay type="int">-1</EndDay>
 <EndHour type="int">-1</EndHour>
 <EndMinute type="int">-1</EndMinute>
 <EndMonth type="int">-1</EndMonth>
 <EndYear type="int">-1</EndYear>
 </Rule>
 </Rules>
 </User>
 </Users>
</ID>

4.1.1.2 Example of User XML schema

The following represents a user XML schema:

<?xml version="1.0"?>
<!---->
<!-- ID Users: My Personal -->
<!-- Date: 2018-03-15T10:20:40 -->
<!---->
<ID>
 <Users>
 <User name="otheruser@someplace.com" type="Trusted">
 <Enabled type="bool">true</Enabled>
 <Email type="string">heruser@someplace.com</Email>
 <Expiration type="string">2117-03-14T20:00:00</Expiration>
 <FormalName type="string"></FormalName>
 <Privileges type="string">Read,Write,Delete,Print,Copy,Sign,Owner </Privileges>
 <!---->
 <Private>... Base64 ... encoded</Private>
 <!---->
 <Rules>
 <Rule name="ConfigurationSetup">
 <Configurations>
 <Configuration id="0" name="id">
 <Enabled type="bool">false</Enabled>
 <!---->
 <Device id="0" name="id">
 <Architecture type="string"></Architecture>
 <CpuModel type="string"></CpuModel>
 <CpuVendor type="string"></CpuVendor>
 <DeviceType type="string"></DeviceType>
 <Locale type="string"></Locale>
 <MachineModel type="string"></MachineModel>
 <MachineName type="string"></MachineName>
 <MachineSN type="string"></MachineSN>
 <MachineUUID type="string"></MachineUUID>
 <MachineVendor type="string"></MachineVendor>
 <OsName type="string"></OsName>
 <OsUserName type="string"></OsUserName>
 <OsVersion type="string"></OsVersion>
 </Device>
 <!---->
 <Location id="0" name="id">

 Copyright © 2020, Sertainty Corporation

58

V3.2.0.

 <Address type="string"></Address>
 <City type="string"></City>
 <Country type="string"></Country>
 <IpAddress type="string"></IpAddress>
 <Latitude type="string"></Latitude>
 <Longitude type="string"></Longitude>
 <ScoreAddress type="string"></ScoreAddress>
 <ScoreCity type="string"></ScoreCity>
 <ScoreCountry type="string"></ScoreCountry>
 <ScoreIP type="string"></ScoreIP>
 <ScoreState type="string"></ScoreState>
 <ScoreZipcode type="string"></ScoreZipcode>
 <State type="string"></State>
 <Zipcode type="string"></Zipcode>
 </Location>
 </Configuration>
 </Configurations>
 </Rule>
 <!---->
 <Rule name="ApprovalSetup">
 <ExternalLength type="int">6</ExternalLength>
 <Approval name="6">
 <Enabled type="bool">false</Enabled>
 <Address type="string"></Address>
 <Description type="string"></Description>
 <Prompt type="string">6</Prompt>
 <Type type="string">SMS</Type>
 </Approval>
 </Rule>
 <!---->
 <Rule name="ScheduleSetup">
 <Enabled type="bool">true</Enabled>
 <DaySunday type="bool">true</DaySunday>
 <DayMonday type="bool">true</DayMonday>
 <DayTuesday type="bool">true</DayTuesday>
 <DayWednesday type="bool">true</DayWednesday>
 <DayThursday type="bool">true</DayThursday>
 <DayFriday type="bool">true</DayFriday>
 <DaySaturday type="bool">true</DaySaturday>
 <StartDay type="int">-1</StartDay>
 <StartHour type="int">-1</StartHour>
 <StartMinute type="int">-1</StartMinute>
 <StartMonth type="int">-1</StartMonth>
 <StartYear type="int">-1</StartYear>
 <EndDay type="int">-1</EndDay>
 <EndHour type="int">-1</EndHour>
 <EndMinute type="int">-1</EndMinute>
 <EndMonth type="int">-1</EndMonth>
 <EndYear type="int">-1</EndYear>
 </Rule>
 </Rules>
 </User>
 </Users>
</ID>

4.1.1.3 Example of a Machine Configuration XML Schema

The following represents a configuration XML schema:

<?xml version="1.0"?>
<!---->
<!-- ID Configuration -->
<!-- Date: 2018-03-15T10:12:34 -->
<!---->
<ID>
 <Configurations>
 <Configuration id="3196130144" name="HalethorpeMD-MacBookPro11,5">
 <Enabled type="bool">true</Enabled>
 <!---->

 Copyright © 2020, Sertainty Corporation

59

V3.2.0.

 <Device id="3906982300" name="MacBookPro11,5">
 <Architecture type="string">x86_64</Architecture>
 <CpuModel type="string">Intel(R) Core(TM) i7-4980HQ CPU @ 2.80GHz</CpuModel>
 <CpuVendor type="string">GenuineIntel</CpuVendor>
 <DeviceType type="string">Mobile Device</DeviceType>
 <MachineModel type="string">MacBookPro11,5</MachineModel>
 <MachineSN type="string">1234567</MachineSN>
 <MachineUUID type="string">C43376B5-AAAA-5418-BAB2-FB77DSDF</MachineUUID>
 <MachineVendor type="string">Apple</MachineVendor>
 <OsName type="string">MacOSX</OsName>
 <OsUserName type="string">muser</OsUserName>
 <OsVersion type="string">10.12.6</OsVersion>
 </Device>
 <!---->
 <Location id="861180259" name="HalethorpeMD">
 <Address type="string"></Address>
 <City type="string">Halethorpe</City>
 <Country type="string">US</Country>
 <IpAddress type="string">107.1.244.110/10.10.1.2/172.20.1.31</IpAddress>
 <Latitude type="string">39.195</Latitude>
 <Longitude type="string">-76.6687</Longitude>
 <ScoreAddress type="string">0</ScoreAddress>
 <ScoreCity type="string">0</ScoreCity>
 <ScoreCountry type="string">0</ScoreCountry>
 <ScoreIP type="string">0</ScoreIP>
 <ScoreState type="string">0</ScoreState>
 <ScoreZipcode type="string">0</ScoreZipcode>
 <State type="string">MD</State>
 <TimeDiff type="string">58</TimeDiff>
 <Timestamp type="string">1521123095946</Timestamp>
 <Zipcode type="string">21227</Zipcode>
 </Location>
 </Configuration>
 </Configurations>
</ID>

Figure 1 - Managed ID Data Flow

4.1.1.4 Example of UXP ID Creation

• Load XML from file

bytearray b1, b2, b3;

b1 = file::readAll(“MyDoc.xml”);

• Add current machine fingerprint to document

 Copyright © 2020, Sertainty Corporation

60

V3.2.0.

b2 = id::getConfiguration();
b1 = id::addConfiguration(b1, b2, “*”);

• Apply rule preset to document

b1 = id::applyRulesByName(b1, "WorkflowMachine");

• Create ID from XML document

b3 = id::newIdFromDocument(b1);

• Save ID to file

file::writeAll(“id.iic”,b3,”replace”);

▪ Rule Presets

A rule preset is a set of parameters that are used to construct a UXP ID. The underlying format of the preset is

an XML document; however, the Workflow Assistant typically manages the presets using a structure editor.

When a UXP ID is being defined within the Workflow Assistant, a preset can be used to fill in the initial values

for current rules. The user, if authorized, can then accept the initial values or change them to desired settings.

The UXP Object API can also create a UXP ID using the preset by name or by XML document. A named

preset must be defined within the Workflow Assistant. The preset approach will allow a developer to

programmatically construct custom UXP IDs without using the Workflow Assistant.

The following tables describe supported rules:

Table 7 – AlertSetup Rule Attributes

Attribute Datatype Description

EmailAddress String Specifies the email address to which alerts can be delivered.

IncludeDevice Boolean If true, an alert will contain the sender’s device fingerprint.

IncludeLicense Boolean If true, the alert will contain the sender’s Sertainty license

information.

IncludeLocation Boolean If true, an alert will contain the sender’s network location.

SMSAddress String Specifies the SMS address to which alerts can be delivered.

The address is actually the service providers email address

used to deliver SMS messages.

UseEmail Boolean If true, alerts will be sent to the email as specified in the

attribute EmailAddress.

UseSMS Boolean If true, alerts will be sent to the email as specified in the

attribute SMSAddress.

 Copyright © 2020, Sertainty Corporation

61

V3.2.0.

Table 8 – ApprovalSetup Rule Attributes

Attribute Datatype Description

ApprovalEmail ‘N’ String Specifies the email address to which an approval

request will be made. The recipient will be

presented with a code that must be used when

authenticating the user. ‘N’ must be a number from

1 to 5.

Note: there can be up to five email approvals.

ApprovalEmail ‘N’ Description String Description that will be included in the approval

email. ‘N’ must be a number from 1 to 5.

ApprovalEmail ‘N’ Prompt String Prompt that will be presented at authentication time.

ApprovalSMS ‘N’ String Specifies the service provider email address to which

an SMS approval request will be made. The

recipient will be presented with a code that must be

used when authenticating the user. ‘N’ must be a

number from 1 to 5.

Note: there can be up to five SMS approvals.

ApprovalSMS ‘N’ Description String Description that will be included in the approval SMS

message. ‘N’ must be a number from 1 to 5.

ApprovalSMS ‘N’ Prompt String Prompt that will be presented at authentication time.

‘N’ must be a number from 1 to 5.

ExternalLength Number Specifies the length in characters of the approval

codes. Approval codes are randomly generated

numbers.

Table 9 – EventSetup Rule Attributes

Attribute Datatype Description

EmailAddress String Optional email address to which all events for the UXP

Object will be sent.

ExternalKey String A key that must be provided to the API when recording

events to an external callback routine. The external routine

must use the key to decode the event data.

FileSpec String Optional file specification to which all events for the UXP

Object will be written. If the output file is a UXP Object, the

events will be recorded using the UXP Object journaling

feature. To record events to standard output, use console:

as the file specification.

FtpURL String Unsupported

LogAccesses Boolean If true, any access to UXP Object data will trigger an event.

 Copyright © 2020, Sertainty Corporation

62

V3.2.0.

Attribute Datatype Description

LogFailures Boolean If true, an authentication failure will trigger an event.

LogMessages Boolean If true, any external messages sent from the UXP Object will

trigger and event.

LogRepeats Boolean If true, repeated unsuccessful authentication attempts will

trigger an event.

RecordEmail Boolean If true, events will be sent to the specified email address.

RecordExternal Boolean If true, events will be sent to an external callback routine.

RecordFile Boolean If true, events will be sent to the file specified in FileSpec.

RecordFtp Boolean Unsupported

RecordLocal Boolean If true, events will be recorded within the UXP Object. The

UXP Object must not be read-only.

RecordRemote Boolean If true, events will be sent to a reachable Data Services

server.

RecordsSMS Boolean If true, events will be send to the specified SMS address.

RemoteURL String Contains the URL of a Data Services server to receive

events.

SMSAddress String Optional SMS email address to which all events for the UXP

Object will be sent. The address is actually the owner’s

mobile service provider address that will transform an email

into an SMS message.

Table 10 – GeneralSetup Rule Attributes

Attribute Datatype Description

AdvancedDataLogging Boolean If true, debugging information will be written to the Sertainty

log for the current application.

AlternateReality String Specifies an alternate workspace within the UXP Object.

The default workspace is Public. Alternate realities require a

special license.

Compliance Number Specifies the number of days until the UXP Object will

automatically destroyed. The day value is relative to the

date at which the UXP Object is created.

MaximumAccesses Number Specifies the maximum number of times the UXP Object

can be authenticated. A zero indicates unlimited.

MaximumCycleFailures Number Specifies the maximum authentication attempts per session.

MaximumIdelTime Number Specifies the maximum number of seconds that a UXP

Object can be idle. If idle time exceeds the time, the UXP

Object will be closed.

MaximumTotalFailures Number Specifies the maximum number of failed authentication

attempts without a successful authentication. If the number

is reached, the UXP Object will self-destruct.

 Copyright © 2020, Sertainty Corporation

63

V3.2.0.

Attribute Datatype Description

UseLocalTime Boolean If true, the UXP Object will consider local machine date and

time to be trusted. Otherwise, date and time will only be

trusted if acquired from a trusted timer server.

Workflow Boolean If true, the UXP Object will not permit interactive

authentication. All authentication challenges and responses

must be provided ahead of the first authentication attempt.

Table 12 – RestrictionsSetup Rule Attributes

Attribute Datatype Description

ConfigurationAltReality Boolean Force the UXP Object into an alternate workspace if

the current hardware and network location combination

is unrecognized.

ConfigurationApproval Boolean Require an approval if the current hardware and

network location combination is unrecognized.

ConfigurationDeny Boolean Deny access if the current hardware and network

location combination is unrecognized.

ConfigurationDestroy Boolean Initiate a self-destruct if the current hardware and

network location combination is unrecognized.

ConfigurationPrompts Number Add the specified number of challenges if the current

hardware and network location combination is

unrecognized.

EveryAuthenticationApproval Boolean Require an approval for every authentication attempt.

EveryAuthenticationPrompts Number Add the specified number of challenges for every

authentication attempt.

HardwareAltReality Boolean Force the UXP Object into an alternate workspace if

the current hardware is unrecognized.

HardwareApproval Boolean Require an approval if the current hardware is

unrecognized.

HardwareDeny Boolean Deny access if the current hardware is unrecognized.

HardwareDestroy Boolean Initiate a self-destruct if the current hardware is

unrecognized.

HardwarePrompts Number Add the specified number of challenges if the current

hardware is unrecognized.

MovementAltReality Boolean Force the UXP Object into an alternate workspace if

the current UXP Object file location is unrecognized.

MovementApproval Boolean Require an approval if the current UXP Object file

location is unrecognized.

MovementDeny Boolean Deny access if the current network location is

unrecognized.

MovementDestroy Boolean Initiate a self-destruct if the current UXP Object file

location is unrecognized.

 Copyright © 2020, Sertainty Corporation

64

V3.2.0.

Attribute Datatype Description

MovementPrompts Number Add the specified number of challenges if the current

network location is unrecognized.

NetworkAltReality Boolean Force the UXP Object into an alternate workspace if

the current network location is unrecognized.

NetworkApproval Boolean Require an approval if the current network location is

unrecognized.

NetworkDeny Boolean Deny access if the current network location is

unrecognized.

NetworkDestroy Boolean Initiate a self-destruct if the current network location is

unrecognized.

NetworkPrompts Number Add the specified number of challenges if the current

network location is unrecognized.

Preset String Specifies the Sertainty rule preset that the current set

of rules closely matches. This is purely informational

and does not affect UXP Object construction.

ReadOnlyAltReality Boolean Force the UXP Object into an alternate workspace if

the current UXP Object is read-only.

ReadOnlyApproval Boolean Require an approval if the current UXP Object is read-

only.

ReadOnlyDeny Boolean Deny access if the current UXP Object is read-only.

ReadOnlyDestroy Boolean Initiate a self-destruct if the current UXP Object is

read-only.

ReadOnlyPrompts Number Add the specified number of challenges if the current

UXP Object is read-only.

ScheduleAltReality Boolean Force the UXP Object into an alternate workspace if

the current UXP Object violates the schedule access

window.

ScheduleApproval Boolean Require an approval if the current UXP Object violates

the schedule access window.

ScheduleDeny Boolean Deny access if the current UXP Object violates the

schedule access window.

ScheduleDestroy Boolean Initiate a self-destruct if the current UXP Object

violates the schedule access window.

SchedulePrompts Number Add the specified number of challenges if the current

UXP Object violates the schedule access window.

UntrustedSystemAltReality Boolean Force the UXP Object into an alternate workspace if

the current operating system is an untrusted virtual

machine.

UntrustedSystemApproval Boolean Require an approval if the current operating system is

an untrusted virtual machine.

UntrustedSystemDeny Boolean Deny access if the current UXP Object operating

system is an untrusted virtual machine.

UntrustedSystemDestroy Boolean Initiate a self-destruct if the current UXP Object

operating system is an untrusted virtual machine.

 Copyright © 2020, Sertainty Corporation

65

V3.2.0.

Attribute Datatype Description

UntrustedSystemPrompts Number Add the specified number of challenges if the current

UXP Object operating system is an untrusted virtual

machine.

UntrustedTimeAltReality Boolean Force the UXP Object into an alternate workspace if

the current date and time cannot be verified.

UntrustedTimeApproval Boolean Require an approval if the current date and time cannot

be verified.

UntrustedTimeDeny Boolean Deny access if the current date and time cannot be

verified.

UntrustedTimeDestroy Boolean Initiate a self-destruct if the current date and time

cannot be verified.

UntrustedTimePrompts Number Add the specified number of challenges if the current

date and time cannot be verified.

Table 13 – ScheduleSetup Rule Attributes

Attribute Datatype Description

DayFriday Boolean If false. UXP Object access will not be permitted on

this day of the week.

DayMonday Boolean If false. UXP Object access will not be permitted on

this day of the week.

DaySaturday Boolean If false. UXP Object access will not be permitted on

this day of the week.

DaySunday Boolean If false. UXP Object access will not be permitted on

this day of the week.

DayThursday Boolean If false. UXP Object access will not be permitted on

this day of the week.

DayTuesday Boolean If false. UXP Object access will not be permitted on

this day of the week.

DayWednesday Boolean If false. UXP Object access will not be permitted on

this day of the week.

Enabled Boolean If true, the scedule window is enforced.

EndDay Number Specifies the day of the month on which UXP Object

access ends. A -1 indicates any day.

EndHour Number Specifies the hour of the day on which UXP Object

access ends. A -1 indicates any hour.

EndMinute Number Specifies the minute of the hour on which UXP Object

access ends. A -1 indicates any minute.

EndMonth Number Specifies the month of the year on which UXP Object

access ends. A -1 indicates any month.

EndYear Number Specifies the year on which UXP Object access ends.

A -1 indicates any year.

 Copyright © 2020, Sertainty Corporation

66

V3.2.0.

Attribute Datatype Description

StartDay Number Specifies the day of the month on which UXP Object

access starts. A -1 indicates any day.

StartHour Number Specifies the hour of the day on which UXP Object

access starts. A -1 indicates any hour.

StartMinute Number Specifies the minute of the hour on which UXP Object

access starts. A -1 indicates any minute.

StartMonth Number Specifies the month of the year on which UXP Object

access starts. A -1 indicates any month.

StartYear Number Specifies the year on which UXP Object access starts.

A -1 indicates any year.

Table 14 – UserAdvancedSetup Rule Attributes

Attribute Datatype Description

MaximumTime Number Specifies the maximum number of seconds that will be

tolerated when responding to each challenge. A zero

indicates no limit.

MaximumTotalTime Number Specifies the maximum total number of seconds that

will be tolerated when responding to all challenges. A

zero indicates no limit.

MinimumTime Number Specifies the minimum number of seconds that will be

tolerated when responding to each challenge. A zero

indicates no minimum.

MinimumTotalTime Number Specifies the minimum total number of seconds that

will be tolerated when responding to all challenges. A

zero indicates no minimum.

Table 15 – UserBasicSetup Rule Attributes

Attribute Datatype Description

IgnoreCase Boolean If true, challenge response values will match

regardless of letter case.

IgnoreChars String Specifies characters that will be ignored when provided

as part of the challenge response value.

Table 16 – UserRecoverySetup Rule Attributes

Attribute Datatype Description

MaximumFailures Number Specifies the maximum number of failed challenges

that will be tolerated during an authentication recovery

 Copyright © 2020, Sertainty Corporation

67

V3.2.0.

Attribute Datatype Description

scenario. To permit authentication, this value must be

met as well as the MinimumCorrect value.

MinimumCorrect Number Specifies the minimum number of correct challenge

responses that must be met in order to authentication

during a recovery scenario.

The following table describes where a rule and its attributes can be applied:

Table 17 – Rule application

Rule ID User

AlertSetup Yes No

ApprovalSetup Yes Yes

ConfigurationSetup Yes Yes

EventSetup Yes No

GeneralSetup Yes No

ScheduleSetup Yes Yes

RestrictionsSetup Yes No

UserBasicSetup No Yes

UserAdvancedSetup No Yes

UserRecoverySetup No Yes

The format of the preset XML document is:

<?xml version="1.0"?>
<!--Rule Presets-->
<RulePresets>
 <LastEditBy>MacOSX/gsmith</LastEditBy>
 <LastEditDate>03/15/2018 10:35</LastEditDate>

 <!---->
 <Preset name="Company Confidential" position="3">
 <!---->
 <Rule name="AlertSetup">
 <EmailAddress type="string"></EmailAddress>
 <IncludeDevice type="bool">true</IncludeDevice>
 <IncludeLicense type="bool">false</IncludeLicense>
 <IncludeLocation type="bool">true</IncludeLocation>
 <SMSAddress type="string"></SMSAddress>
 <UseEmail type="bool">false</UseEmail>
 <UseSMS type="bool">false</UseSMS>
 </Rule>
 <!---->
 <Rule name="ApprovalSetup">
 <ApprovalEmail 1 type="string"></ApprovalEmail 1>
 <ApprovalEmail 1 Description type="string"></ApprovalEmail 1 Description>
 <ApprovalEmail 1 Prompt type="string"></ApprovalEmail 1 Prompt>
 <ApprovalEmail 2 type="string"></ApprovalEmail 2>
 <ApprovalEmail 2 Description type="string"></ApprovalEmail 2 Description>
 <ApprovalEmail 2 Prompt type="string"></ApprovalEmail 2 Prompt>
 <ApprovalEmail 3 type="string"></ApprovalEmail 3>
 <ApprovalEmail 3 Description type="string"></ApprovalEmail 3 Description>

 Copyright © 2020, Sertainty Corporation

68

V3.2.0.

 <ApprovalEmail 3 Prompt type="string"></ApprovalEmail 3 Prompt>
 <ApprovalEmail 4 type="string"></ApprovalEmail 4>
 <ApprovalEmail 4 Description type="string"></ApprovalEmail 4 Description>
 <ApprovalEmail 4 Prompt type="string"></ApprovalEmail 4 Prompt>
 <ApprovalEmail 5 type="string"></ApprovalEmail 5>
 <ApprovalEmail 5 Description type="string"></ApprovalEmail 5 Description>
 <ApprovalEmail 5 Prompt type="string"></ApprovalEmail 5 Prompt>
 <ApprovalSMS 1 type="string"></ApprovalSMS 1>
 <ApprovalSMS 1 Description type="string"></ApprovalSMS 1 Description>
 <ApprovalSMS 1 Prompt type="string"></ApprovalSMS 1 Prompt>
 <ApprovalSMS 2 type="string"></ApprovalSMS 2>
 <ApprovalSMS 2 Description type="string"></ApprovalSMS 2 Description>
 <ApprovalSMS 2 Prompt type="string"></ApprovalSMS 2 Prompt>
 <ApprovalSMS 3 type="string"></ApprovalSMS 3>
 <ApprovalSMS 3 Description type="string"></ApprovalSMS 3 Description>
 <ApprovalSMS 3 Prompt type="string"></ApprovalSMS 3 Prompt>
 <ApprovalSMS 4 type="string"></ApprovalSMS 4>
 <ApprovalSMS 4 Description type="string"></ApprovalSMS 4 Description>
 <ApprovalSMS 4 Prompt type="string"></ApprovalSMS 4 Prompt>
 <ApprovalSMS 5 type="string"></ApprovalSMS 5>
 <ApprovalSMS 5 Description type="string"></ApprovalSMS 5 Description>
 <ApprovalSMS 5 Prompt type="string"></ApprovalSMS 5 Prompt>
 <ExternalLength type="int">6</ExternalLength>
 </Rule>
 <!---->
 <Rule name="ConfigurationSetup">
 <ConfigurationFile 1 type="string"></ConfigurationFile 1>
 <ConfigurationFile 2 type="string"></ConfigurationFile 2>
 <ConfigurationFile 3 type="string"></ConfigurationFile 3>
 <ConfigurationFile 4 type="string"></ConfigurationFile 4>
 <ConfigurationFile 5 type="string"></ConfigurationFile 5>
 <ReplaceConfigurations type="bool">true</ReplaceConfigurations>
 </Rule>
 <!---->
 <Rule name="EventSetup">
 <EmailAddress type="string"></EmailAddress>
 <ExternalKey type="string"></ExternalKey>
 <LogAccesses type="bool">true</LogAccesses>
 <LogFailures type="bool">true</LogFailures>
 <LogMessages type="bool">true</LogMessages>
 <LogRepeats type="bool">true</LogRepeats>
 <RecordEmail type="bool">false</RecordEmail>
 <RecordExternal type="bool">false</RecordExternal>
 <RecordLocal type="bool">true</RecordLocal>
 <RecordRemote type="bool">false</RecordRemote>
 <RecordSMS type="bool">false</RecordSMS>
 <SMSAddress type="string"></SMSAddress>
 <URL type="string"></URL>
 </Rule>
 <!---->
 <Rule name="GeneralSetup">
 <AdvancedDataLogging type="bool">true</AdvancedDataLogging>
 <AlternateReality type="string"></AlternateReality>
 <Compliance type="date">03/14/2118 20:00</Compliance>
 <MaximumAccesses type="int">0</MaximumAccesses>
 <MaximumCycleFailures type="int">4</MaximumCycleFailures>
 <MaximumIdleTime type="int">99</MaximumIdleTime>
 <MaximumTotalFailures type="int">0</MaximumTotalFailures>
 <UseLocalTime type="bool">false</UseLocalTime>
 <Workflow type="bool">false</Workflow>
 </Rule>
 <!---->
 <Rule name="MemberPrivileges">
 <Copy type="bool">true</Copy>
 <Delete type="bool">true</Delete>
 <Owner type="bool">true</Owner>
 <Print type="bool">true</Print>
 <Read type="bool">true</Read>
 <Read Events type="bool">true</Read Events>
 <Read Signature type="bool">true</Read Signature>
 <Sign type="bool">true</Sign>
 <Write type="bool">true</Write>
 </Rule>

 Copyright © 2020, Sertainty Corporation

69

V3.2.0.

 <!---->
 <Rule name="RestrictionsSetup">
 <ConfigurationAltReality type="bool">false</ConfigurationAltReality>
 <ConfigurationApproval type="bool">false</ConfigurationApproval>
 <ConfigurationDeny type="bool">false</ConfigurationDeny>
 <ConfigurationDestroy type="bool">false</ConfigurationDestroy>
 <ConfigurationPrompts type="int">0</ConfigurationPrompts>
 <EveryAuthenticationApproval type="bool">false</EveryAuthenticationApproval>
 <EveryAuthenticationPrompts type="int">3</EveryAuthenticationPrompts>
 <HardwareAltReality type="bool">false</HardwareAltReality>
 <HardwareApproval type="bool">false</HardwareApproval>
 <HardwareDeny type="bool">false</HardwareDeny>
 <HardwareDestroy type="bool">false</HardwareDestroy>
 <HardwarePrompts type="int">0</HardwarePrompts>
 <MovementAltReality type="bool">false</MovementAltReality>
 <MovementApproval type="bool">false</MovementApproval>
 <MovementDeny type="bool">false</MovementDeny>
 <MovementDestroy type="bool">false</MovementDestroy>
 <MovementPrompts type="int">0</MovementPrompts>
 <NetworkAltReality type="bool">false</NetworkAltReality>
 <NetworkApproval type="bool">false</NetworkApproval>
 <NetworkDeny type="bool">false</NetworkDeny>
 <NetworkDestroy type="bool">false</NetworkDestroy>
 <NetworkPrompts type="int">0</NetworkPrompts>
 <Preset type="string"></Preset>
 <ReadOnlyAltReality type="bool">false</ReadOnlyAltReality>
 <ReadOnlyApproval type="bool">false</ReadOnlyApproval>
 <ReadOnlyDeny type="bool">false</ReadOnlyDeny>
 <ReadOnlyPrompts type="int">0</ReadOnlyPrompts>
 <ScheduleAltReality type="bool">false</ScheduleAltReality>
 <ScheduleApproval type="bool">false</ScheduleApproval>
 <ScheduleDeny type="bool">false</ScheduleDeny>
 <ScheduleDestroy type="bool">false</ScheduleDestroy>
 <SchedulePrompts type="int">0</SchedulePrompts>
 <UntrustedSystemAltReality type="bool">false</UntrustedSystemAltReality>
 <UntrustedSystemApproval type="bool">false</UntrustedSystemApproval>
 <UntrustedSystemDeny type="bool">false</UntrustedSystemDeny>
 <UntrustedSystemDestroy type="bool">false</UntrustedSystemDestroy>
 <UntrustedSystemPrompts type="int">0</UntrustedSystemPrompts>
 <UntrustedTimeAltReality type="bool">false</UntrustedTimeAltReality>
 <UntrustedTimeApproval type="bool">false</UntrustedTimeApproval>
 <UntrustedTimeDeny type="bool">false</UntrustedTimeDeny>
 <UntrustedTimeDestroy type="bool">false</UntrustedTimeDestroy>
 <UntrustedTimePrompts type="int">0</UntrustedTimePrompts>
 </Rule>
 <!---->
 <Rule name="ScheduleSetup">
 <DayFriday type="bool">true</DayFriday>
 <DayMonday type="bool">true</DayMonday>
 <DaySaturday type="bool">true</DaySaturday>
 <DaySunday type="bool">true</DaySunday>
 <DayThursday type="bool">true</DayThursday>
 <DayTuesday type="bool">true</DayTuesday>
 <DayWednesday type="bool">true</DayWednesday>
 <Enabled type="bool">false</Enabled>
 <EndDay type="int">-1</EndDay>
 <EndHour type="int">-1</EndHour>
 <EndMinute type="int">-1</EndMinute>
 <EndMonth type="int">-1</EndMonth>
 <EndYear type="int">-1</EndYear>
 <StartDay type="int">-1</StartDay>
 <StartHour type="int">-1</StartHour>
 <StartMinute type="int">-1</StartMinute>
 <StartMonth type="int">-1</StartMonth>
 <StartYear type="int">-1</StartYear>
 </Rule>
 <!---->
 <Rule name="UserAdvancedSetup">
 <MaximumTime type="int">30</MaximumTime>
 <MaximumTotalTime type="int">99</MaximumTotalTime>
 <MinimumTime type="int">0</MinimumTime>
 <MinimumTotalTime type="int">0</MinimumTotalTime>
 </Rule>

 Copyright © 2020, Sertainty Corporation

70

V3.2.0.

 <!---->
 <Rule name="UserBasicSetup">
 <IgnoreCase type="bool">true</IgnoreCase>
 <IgnoreChars type="string"></IgnoreChars>
 <MinimumPrompts type="int">1</MinimumPrompts>
 </Rule>
 <!---->
 <Rule name="UserRecoverySetup">
 <MaximumFailures type="int">1</MaximumFailures>
 <MinimumCorrect type="int">5</MinimumCorrect>
 </Rule>
 </Preset>
</RulePresets>

4.2 Single-Sign-On

A UXP ID can be used to establish a single-sign-on within the user’s session. A single-sign-on is a special

authentication that will follow the same rules and policies as defined by the UXP iD. Where it differs from

typical UXP Object authentication is that it can become a proxy and represent the current user in subsequent

UXP Object sessions.

Example: If one successfully signs on as me@myplace.com and a UXP Object is opened, the user can

allow the current UXP ID to attempt to authenticate access on the user’s behalf. If the UXP ID cannot

establish a valid connection to the UXP Object, the conventional authentication process will be invoked.

A single sign-on session can be set up as a local session, valid only for the current application, and global,

which will allow other processes to utilize the session.

Single-sign-on works for conventional UXP Object authentication as well as the Sertainty Drive

Technology.

5 Sertainty Drive

Sertainty Drive is a technology extension that facilitates direct access to UXP Object data via the

conventional operating system file system. Using this path, an application does not have to understand or even

be aware of the UXP Technology. It would see accessible protected data just as it would see unprotected

data that may reside in a folder.

On macOSX and Linux, the Drive is based on FUSE. For Windows, a proprietary driver is installed, requiring a

reboot prior to invoking the open drive operation.

Sertainty mobile libraries do not support opening a UXP Object as a drive.

Benefits of using a Sertainty Drive:

• Protected folders and files would be accessible via standard utilities.

Example: On Windows, the Explorer would see a drive as a standard random-access device with an
assigned drive letter. On MacOS X, the Finder would see a Drive as a mounted external drive. The
mounted UXP Object would be similar to the effect of inserting a USB thumb drive and accessing the
contents via utilities.

mailto:me@myplace.com

 Copyright © 2020, Sertainty Corporation

71

V3.2.0.

• A drive can be closed or ejected just like any other external drive. The Workflow Assistant can also
close drives from within the application.

• Applications do not require any code changes to access protected data. Normal operations, such as
creating new files, reading or updating existing files, are supported.

• Data files remain protected even though they appear as normal files in your system.

• UXP Objects can be mounted in read-only mode to prevent any changes via conventional applications.

• When a UXP Object is mounted, authentication occurs exactly like it would if opening it via a UXP-
aware application.

Limitations of the Drive:

• Write-once architecture UXP Objects can only be mounted read-only. Read-write architecture UXP
Objects allow full read-write activities.

• When a UXP Object is mounted as a Drive device, the access is restricted to the current operating
system user. If another user is logged into the system, the drive would not be visible to that user.

• A drive requires exclusive access to the UXP Object. This means that a UXP-aware application, such
as the Workflow Assistant cannot open the same UXP Object that is mounted as a Drive device.

• The only way to mount a UXP Object as a drive is using the Sertainty Workflow Assistant or the
Drive Utility. Future releases of the drive technology may introduce alternate methods of mounting a
UXP Object.

• Advanced features of the UXP Object, such as file access restrictions cannot be changed via the
Drive. All advanced operations must be performed using the Workflow Assistant or through the UXP
Object API.

• A Drive will not timeout. Even though a UXP Object may have an idle-time restriction, the Drive will
not permit the UXP Object to automatically close. This restriction may be removed in a future release.

	1 UXP Engine
	1.1 UXP Identity Data
	1.2 User Data
	1.3 KCL Code Module
	1.3.1 KCL Code Module Control using a UXP ID
	1.4 UXP Object
	1.5 Multi-User Access
	1.6 Log Files
	1.7 Virtual Files
	1.8 User Definitions
	1.8.1 Response Value Restrictions
	1.8.2 Response Data Masking
	1.8.3 Authenticating a UXP Object
	1.8.4 Multi-factor Authentication
	1.9 Events
	1.10 Deferred Message Delivery
	1.11 E-mail Services
	1.12 SMS Services
	1.13 Location Services
	1.14 Home Directory
	1.15 Common Home Directory
	1.16 License Support
	1.17 File specification Tokens
	1.18 Preferences
	1.19 Environment Variables

	2 UXP Object Construction and Access
	2.1 Building your Application
	2.1.1 Deployment

	2.2 Sample Native Construction Flow using C Language
	2.3 Required User Definition Elements
	2.4 Pre-Loading Responses
	2.4.1 Opening an Existing UXP Object
	2.4.2 Adding a New Document to the UXP Object
	2.4.3 Accessing an Existing Document in the UXP Object

	2.5 UXP Callbacks
	2.6 Sample Callback to Prompt the User for Challenges
	2.7 Application Example Scenarios

	3 Advanced Technologies
	3.1 SQL Engine
	3.1.1 Features

	3.2 Secure Variables
	3.3 Secure String Constants
	3.4 Custom error and text messages
	3.5 Building native UXL functions
	3.5.1 Getting started
	3.6 SmartMessage
	3.7 Anonymous SmartMessage Exchange (SMEX)

	4 Sertainty UXP Identity (UXP ID)
	4.1 UXP ID Construction
	 Managed ID Interface (MID)
	4.1.1.1 Example of Full ID XML Schema, complete with one valid user
	4.1.1.2 Example of User XML schema
	4.1.1.3 Example of a Machine Configuration XML Schema
	4.1.1.4 Example of UXP ID Creation

	 Rule Presets

	4.2 Single-Sign-On

	5 Sertainty Drive

