
Self-Protecting-Data
vs. Standard File
Encryption
T H E T H R E E D I F F E R E N T I A T O R S

“We have to move to where
our data is far more aware and

where our data is essentially
helping to protect itself – so

that it knows where it is, who’s
trying to access it, and a lot of

context around it so that it can
be protected – whether it’s on
a computer that gets lost in a

parking lot or left on an
airplane or someplace else

that it is not secure.”

SELF-PROTECTING-DATA VERSUS STANDARD FILE ENCRYPTION: THE THREE DIFFERENTIATORS | 1

GRANT SCHNEIDER
US FEDERAL CISO

A Much-Needed Breakthrough
in Data Security

In a 2018 panel interview, Grant Schneider, US Federal Chief
Information Security Officer and the National Security
Council’s Senior Director for Cybersecurity Policy,
articulated the need for security at the data level itself. Note
how he uses the term “aware” to describe how secure data
might behave in context-sensitive ways to protect itself.

Thomas Sasala takes it a step further. Sasala, Chief Data
Officer for the U.S. Navy, articulates both why we need data-
level security, and what it might mean for user access.

u “The adversaries are not stealing our network; they’re
stealing the data on the network.”

u “[If] the data isn’t protected at the data level — not at
the perimeter level or even at the server, system or
application level — then we’re not going to actually
survive moving into the future.”

u “Data at rest, data in transit, data encryption: these
things all need to be tied together…”

Sertainty offers breakthrough technology in that it gives
data the awareness to act and react, creating a new level of
protection at the data layer.

Sertainty Self-Protecting-Data contains a number of
advanced protection features that set it apart from standard
encryption products and key management methods. This
paper provides a quick explanation of these features, how
they reduce the complexity and burden associated with the
management of data protection, and how Sertainty Self-
Protecting-Data provides a depth of data-centric protection
that standard encryption products alone cannot attain.

SELF-PROTECTING-DATA VERSUS STANDARD FILE ENCRYPTION: THE THREE DIFFERENTIATORS | 2

Encryption Product
Basics

The basic tenet for all encryption products today is the
encoding of a message or information so only authorized
parties can access it, and those who are not authorized
cannot. When data access is desired, the data will be
decrypted and written back into its original format. All data
encryption products utilize keys for encryption. These keys
require protection, outside of the encryption application
itself, including user authentication and authorization to
determine if the user has the necessary privileges to access
the data in the encrypted file.

The two primary methods of data encryption are:
Symmetric-Key Encryption and Public-Key Infrastructure
(PKI or Public-Private Encryption).

Symmetric Key Encryption is the use of a singular
encryption key for both encryption and decryption of
sensitive data. This key can easily be visualized as
resembling a door lock key, in that the same key is used for
protection as well as access, and must be protected, but
shared if others are to gain access to the protected data or
area. You wouldn’t leave your door key hanging on a hook
next to the door! The symmetric key/lock example also
demonstrates that external actions must still be taken to
protect the keys, and hence the data, from theft. These
protections include authentication, authorization (knowing
who possesses the key and that they have permission to
use it), and secure sharing of the key. Still, this provides
access to the entire file for decryption. There are no
controls beyond being allowed access to the data or not
being allowed access to the data. If lost, the locks/keys
must be replaced and securely re-distributed.

Public-Private or PKI Encryption provides for a key pair that
allows one key to be used to encrypt data (example: the
recipient’s public key which is published or publicly shared),
and a matching key (the recipient’s private key, that is kept
private) that is the only key capable of decrypting the public-
key encrypted data. This encryption/decryption process
can be operated in either direction, public encryption-private
decryption/private encryption-public decryption, and
through the simultaneous use of both sender and receiver’s
key pairs, i.e. encrypting data with the public key of the
recipient guarantees only the recipient, who holds the
private key can decrypt the data, and is signed by the private
key of the sender, so the recipient can, by being in
possession of the sender’s public key, guarantee the sender.

This PKI-enhanced process adds:

u Authentication – The sender knows the receiver, and
the receiver knows the sender

u Non-repudiation – The sender cannot deny the
transaction

u Data integrity – Through data hashing of the original
message, the integrity can also be determined

SELF-PROTECTING-DATA VERSUS STANDARD FILE ENCRYPTION: THE THREE DIFFERENTIATORS | 3

Encryption Product
Basics Continued

Both Symmetric-Key and PKI Encryption require external
systems to provide management of the keys. In Symmetric
Key Encryption, the only function provided by the key is
protecting the data. All additional functions, such as
authentication, authorization, etc., are managed externally.
In Public-Private Key Encryption,
authentication/authorization and non-repudiation are
inherent in the transaction, but require a more complex
environment, as PKI is not natively built into many operating
systems or applications and is primarily used for data-in-
transit security requirements. Keys also expire. So, it is the
function of the key management system to provide keys on
request and expire keys when their validity ends.

Neither of these encryption methods monitor for
compliance, nor do they contain behavioral responses to
unmet policy requirements, or self-logging of activity.
Both encryption methods also require the data be
decrypted completely for use when changing the data
state from at-rest to in-transit. They also leave fully-
decrypted/unprotected data files written to disk and
require access to external (to the data) key management
solutions for encryption and decryption.

In short, data encrypted using
standard encryption methods can
only be protected and has no ability
to manage or protect itself!

SELF-PROTECTING-DATA VERSUS STANDARD FILE ENCRYPTION: THE THREE DIFFERENTIATORS | 4

The heart of all data encryption methods, tools, and products
are the encryption keys. These keys must be managed in
accordance with best management practices.

NIST Publication 800-57 Part 1, Revision 4

Not unlike a combination for a safe, encryption keys are only
as good as the security used to protect them and provide
unfettered access to them when required. Additionally, there
is a full key lifecycle, which must include:

u Key generation, pre-activation, activation, expiration,
post-activation, escrow, and destruction

u Physical and/or logical access to the key server(s) for
key lifecycle management

u User/Role access to the key(s), including user
identification, authentication, and authorization policies
of access

Adding to the complexity of the key management lifecycle,
different types of keys are used for different purposes:

u Symmetric keys are used in stream cipher mode for
encrypting data transfers, or in block cipher mode for
encrypting data at rest. Keys are shared between data
source and destination.

u Public/private key pairs are used for protecting data in-
transit/movement. Public keys are either resident in a
directory, or shared individually, and stored in a keyring.
Private keys must be kept secure, yet available. In
today’s proliferating BYOD environment, this is quite a
challenge.

Additionally, each key management server type, including
web-servers, VPNs, SSH servers, secure transport servers,
HSMs, etc., all have their own discreet method of key
lifecycle management and key updating.

The Challenges of
Key Management

SELF-PROTECTING-DATA VERSUS STANDARD FILE ENCRYPTION: THE THREE DIFFERENTIATORS | 5

As the data is moved from a protected data store across a
transport method to a destination, it’s protection often needs
to change to match the discreet encryption methods
supported by the sender, transport, and receiver. From
encrypted data on an originator’s disk, data must be
unencrypted, converted to a message protected with a
shared symmetric key or public/private keypair, then
decrypted and re-encrypted to be written into the recipient’s
store. It’s not unusual for the data to be unencrypted/re-
encrypted multiple times for a single transfer.

A host of products and platforms have been created whose
sole job is to attempt to help simplify management of the
encryption keys for both users and enterprises, yet this has
caused enterprise key management to become a complex
task.

Per a February 2019 Egress Data Policy Survey, barely one in
five organizations implement encryption policies while
sharing sensitive data intra-system, and only one in three
implement encryption policies while sharing sensitive data
inter-system.

The Challenges of Key
Management Continued

To summarize, external key
management inherently creates a
time-intensive, costly, complex,
difficult to manage environment, and
provides a method of attack, both
through attack of the credentials that
authorize access to the keys, and
through denial-of-service.

SELF-PROTECTING-DATA VERSUS STANDARD FILE ENCRYPTION: THE THREE DIFFERENTIATORS | 6

All encryption products require the recipient to have access to
the decryption keys. See Figure 1. Sertainty SPFiles are data
files that are self-aware and self-protecting. The need for an
external key creation, management, and expiration is removed
- as the keys used for SPFile encryption are dynamically-
created, single-use symmetric keys created by the Sertainty
solution during the process of creating the SPFile. These
keys, along with the SPFile identities and policies, are securely
protected inside the SPFile itself through the embedded
Sertainty Intelligence Module. The Intelligence Module
contains and enforces policies for user access, access
limitations including date/time, machine/network access,
data expiration, self-logging, and mitigating actions for non-
compliance, up to and including data shredding. Upon receipt
of the data, the recipient, authorized by the embedded policy
to access the data, will then be able to unprotect the data and
expire the keys; securely store the data until the expiration
date is reached; or the file is deleted. This creates a secure,
encrypted data file that has no key or management server or
process requirement. See Figure 2. This also creates a single,
secure storage and transfer mechanism for use in sensitive
environments where external key management servers are
not available or reachable. It also protects against a bad actor
from performing attacks on the key management server,
potentially denying access to keys and their protected files, or
from performing other access attempts and potential
compromise.

Additionally, as the policies for access are contained within
the file, there is no authentication/authorization server that
can be monitored or attacked for access to the encryption
keys.

Many companies have simplified their key management
challenges, reducing risk and cost through the use of the
Sertainty SPFiles Platform, including those in the finance,
data-science, user authentication, media, healthcare, and
government fields.

Differentiator 1: Sertainty
Serverless Key Management

SELF-PROTECTING-DATA VERSUS STANDARD FILE ENCRYPTION: THE THREE DIFFERENTIATORS | 7

FIG 2.

FIG 1.

Upon creation of encrypted
message, Keys/Policies are
created and stored in Key

Management Server

Upon receipt of message,
Keys/Policies are retrieved

from Key Management Server

N O R M A L E N C R Y P T I O N K E Y
M A N A G E M E N T

S E R T A I N T Y S E C U R E D D A T A

Upon creation of SPFile, the
recipient identity, policies and

protection (including
encryption and subsequent

key management) are
embedded within the file

Upon receipt of SPFile, the
embedded policies determine

user rights, governance
determines behavior of data,

then decryption occurs

With current, standard encryption methodologies, for a
recipient person/service/etc. to access and utilize the
encrypted data in a protected file, the file must be fully
decrypted. This process takes time, and results in a
previously encrypted file now written unencrypted to storage,
which is often not removed afterwards. This increases the
risk that the file can be accessed in its unprotected state at a
later time. Sertainty mitigates this risk and shortens the
decryption process time by allowing decrypting/unprotecting
of only a part of the data file, a single file in a folder, or a
group of files. Ultimately, Sertainty provides selective access
to the decrypted portion of the data, while maintaining full
encryption protection for the remainder of the data.

As a Sertainty SPFile is created, the original data file is
broken into an arbitrary number of individual segments.
Each of these data segments are then protected by its own
dynamically-generated AES-256 bit key. While this is part of
the security aspect of the self-protection features of the
Sertainty SPFile, it also adds a unique secure-access feature.
This feature allows each segment to be decrypted according
to policy via the embedded Sertainty Intelligence Module.
This effects unprotected access to only a portion of the
file/folder/disk by an individual policy, user, or process. See
Figure 3.

Differentiator 2: Sertainty
Selective Data Decryption

Sertainty customers have reported significantly increased
processing speed and security enhancements on process-
intensive applications through the use of this feature. For
example:

u A process accessing a Sertainty SPFile will not need to
fully decrypt the file, act on the data, then re-encrypt the
file. This allows faster access to the file by process and
does not leave remnants of decrypted data in memory
or on disk.

u A recipient user may receive a SPFile that contains many
files (including folder structures, directories, data disks,
sandboxes, etc.), but by policy they are allowed access
to only a controlled subset of these files or portion of a
single file. They will not see or have access to the other
files, and therefore cannot unprotect and expose them.

FIG 3.

S E L E C T I V E D A T A
D E C R Y P T I O N / A C C E S S

With selective decryption, the embedded policies can grant users or processes
can be granted access to a select portion of the data file, speeding up the

process of decryption, and preserving security for the rest of the data in file

RECIPIENT A

RECIPIENT B

RECIPIENT C

SELF-PROTECTING-DATA VERSUS STANDARD FILE ENCRYPTION: THE THREE DIFFERENTIATORS | 8

FILE X

Sertainty SPFiles can be nested within another Sertainty SPFile,
with each file containing unique data and policies, to allow
creation and enforcement of a chain of file recipient execution.
With standard encryption tools, files can be nested within other
encrypted files with different keys. However, a recipient of a
Sertainty SPFile has no need to contact the key manager
individually for rights to decrypt. Each SPFile contains its own
policies above and beyond “decrypt” only (such as
time/location/reaction policy behaviors). A SPFile does not
have to be decrypted so the next nested encrypted file can be
reattached to a message and re-sent. Further, Sertainty nested
SPFiles can be protected using selective data decryption to
prevent simple encrypted files from being written to disk and
left for discovery and potential attack. See Figure 4.

Complex Contract SPFile Nesting Example: A Primary
Contractor creates a set of engineering documents for a new
building. Document X is a primary design document. Document
Y is an interior build-out design plan. Document Z is a materials
list. These documents need to be reviewed, modified as
needed, and approved in order by the Construction Sub-
Contractor, the Build-Out Sub-Contractor, and finally, the
Materials Supplier. A nested SPFile can, by policy, control the
order in which these files are opened, by whom, what content is
available to them for examination or modification, and what
policy enforcement method takes place.

For example, the Primary Design Document is sent to the
Construction Sub-Contractor for modifications, approval, and
sign-off. Once it’s approved, the Interior Build-Out Design
document, with any new changes/modifications, can be
approved and signed off by both sub-contractors. Once the
design documents for the external building and internal build-
out are approved, the Materials List, can then be opened and
modified as needed by both Sub-Contractors, and sent to the
Materials Supplier for approval and fulfillment. Further, the
Design Documents must be signed during working hours so
that assistance may be provided if necessary, while the
Materials List must be signed before an expiration date.

Differentiator 3: Sertainty
Secure-Data File Policy Nesting

FIG 4.

FILE Z

FILE Y

File X, contains File Y and File Z, each with their own policies and user IDs. File
Y contains File Z. File X is unprotected to expose File Y which is unprotected to

expose File Z. Each file can have discreet policies that determine protection,
time, user, etc.

S E C U R E F I L E P O L I C Y N E S T I N G

SELF-PROTECTING-DATA VERSUS STANDARD FILE ENCRYPTION: THE THREE DIFFERENTIATORS | 9

For organizations who seek to assure the integrity of their
sensitive digital assets and compliance by their processes,
users, and supply-chain, Sertainty is the only total data-layer
protection and policy enforcement tool that embeds
intelligence directly within data files. Unlike network,
infrastructure and key management-dependent solution
providers, the Sertainty Self-Protecting-Data Technology
Platform easily integrates with legacy systems, and allows
organizations to automate real-time data policy
enforcement, protection and monitoring capabilities,
transforming data from a liability to an asset.

To learn more about Sertainty Self-Protecting-Data contact
us today!

Summary

© 2020 Sertainty Corporation. All rights reserved. All information herein is subject to
change without notice. No contractual obligations are created hereby. This document
may not be reproduced or transmitted in any form or by any means. Sertainty and the

Sertainty logo are trademarks of Sertainty. Other logos and trademarks are the
properties of their respective owners.

sertainty.com | sales@sertainty.com

http://sertainty.com

